6 research outputs found
Nanocarbons And Quantum Dots Formation In New Hybrid Materials
We present technique of obtaining complex hybrid structures combining the multi-walled carbon nanotubes or multi-layer graphene and luminescent hydrophobic semiconductor core/shell quantum dots CdSe/ZnS. As a result, a formation of quantum dot decorated carbon nanotubes and graphene films is evidenced by 2D microluminescence and micro-Raman mapping of quantum dots and nanocarbons, respectively, where a spatial correlation between the luminescence and Raman signals is found. © 2014 SPIE.912612-02-00938; RFBR; Russian Foundation for Basic Research; 12-02-01263; RFBR; Russian Foundation for Basic ResearchKalantar-Zadeh, K., (2008) Nanotechnology-Enabled Sensors, p. 490. , K. Kalantar-zadeh, B. Fry. New York.: Springer Science & Business Media(1955) Springer Handbook of Nanotechnology, , Ed. B. Bhusha.-New York.: Springer Science & Business Media, 2010, ISBN: 978-3-642-02524-2Cattanach, K., Kulkarni, R.D., Kozlov, M., Manohar, S.K., Flexible carbon nanotube sensors for nerve agent simulants (2006) Nanotechnology, 17, pp. 4123-4128Peng, S., O'Keeffe, J., Wei, C., Cho, K., Kong, J., Chen, R., Franklin, N., Dai, H., Carbon nanotube chemical and mechanical sensors (2001) Proceedings of the 3rd International Workshop on Structural Health Monitoring, pp. 1-8. , USA, September 17-19, 2001, Stanford University, StanfordSnow, E.S., Perkins, F.K., Houser, E.H., Badescu, S.C., Reinecke, T.L., (2005) Science, 307, pp. 1942-1945. , Chemical detection with a single-walled carbon nanotube capacitorStar, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Gas sensor array based on metal-decorated carbon nanotubes (2006) J. Phys. Chem. B, 110, pp. 21014-21020Xu, Z., Gao, H., Guoxin, H., Solution-based synthesis and characterization of a silver nanoparticle-graphene hybrid film Carbon, 49 (14), pp. 4731-4738Cao, A., Liu, Z., Chu, S., Wu, M., Ye, Z., Cai, Z., Chang, Y., Liu, Y., A facile one-step method to produce graphene-cds quantum dot nanocomposites as promising optoelectronic materials (2010) Adv. Mater, 22, pp. 103-106Yang, Y.-K., He, Ch.-E., He, W.-J., Yu, L.-J., Peng, R.-G., Xie, X.-L., Wang, X.-B., Mai, Y.-W., Reduction of silver nanoparticles onto graphene oxide nanosheets with N,Ndimethylformamide and SERS activities of GO/Ag composites (2011) J Nanopart. Res, 13, pp. 5571-5581Lightcap, V., Kamat, P.V., Fortification of cdse quantum dots with graphene oxide. Excited state interactions and light energy conversion (2012) J. Am. Chem. Soc, 134, pp. 7109-7116Ghosh, A., Rao, K.V., Voggu, R., George, S.J., Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules (2010) Chemical Physics Letters, 488, pp. 198-201Kim, Y.-T., Han, J.H., Hong, B.H., Kwon, Y.-U., Electrochemical synthesis of cdse quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates (2010) Adv. Mater, 22, pp. 515-518Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Arquer De Garcia, F.P., Gatti, F., Koppens, L.F.H., Hybrid graphene-quantum dot phototransistors with ultrahigh gain (2012) Nature Nanotechnology, 7, pp. 363-368Wang, Y., Yao, H.-B., Wang, X.-H., Yu, Sh.-H., One-pot facile decoration of CdSe quantum dots on graphene nanosheets: Novel graphene-CdSe nanocomposites with tunable fluorescent properties (2011) J. Mater. Chem, 21, pp. 562-566Murray, C.B., Gaschler, W., Sun, S., Doyle, H., Betley, T.A., Kagan, C.R., Colloidal synthesis of nanocrystals and nanocrystal superlattices IBM J. Res. & Dev., 45 (1), pp. 47-56Ermakov, V.A., Alaferdov, A.V., Vaz, A.R., Baranov, A.V., Moshkalev, S.A., Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals (2013) Nanotechnology, 24 (15), p. 15530110Bogdanov, K., Fedorov, A., Osipov, V., Enoki, T., Takai, K., Hayashi, T., Ermakov, V., Moshkalev A, S., Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies Baranov Carbon, , 02/201
New hybrid structures based on CdSe/ZnS quantum dots and multilayer graphene for photonics applications
Formation of reliable electrical and thermal contacts between graphene and metal electrodes by laser annealing
Formation Of Reliable Electrical And Thermal Contacts Between Graphene And Metal Electrodes By Laser Annealing
A new approach for electrical and thermal improvement of contacts between carbon nanostructures (multi-wall carbon nanotubes - MWCNTs and multi-layer graphene - MLG) and metal electrodes by localized laser heating is presented. The nanostructures were deposited over electrodes using the dielectrophoresis (DEP) technique. A focused laser beam was used for direct heating the samples in ambient atmosphere. The Raman spectroscopy was used to determine the process temperature by observations of the graphitic G-line downshift. In the laser annealing experiments, the G-line position was found first to downshift linearly with laser power indicating gradual heating of the sample proportional to the absorbed power. However, with increasing power the shift was found to saturate at levels that depend on the metal and the contact area. This saturation was attributed to gradual increase of the contact area and improvement of the thermal contacts between the nanostructures and metal electrode that can occur during sample heating. The maximum sample temperature in the beginning of the annealing process was always higher for MLG samples, due to smaller area of contact established between rigid multi-layer graphene and initially rough metal surface. The final result is the increased heat losses to the electrodes and, subsequently, the reduction of the samples temperature. The main advantage of this method, when compared with traditional and rapid thermal annealing, is that the thermal treatment is localized in a small pre-determined region, allowing individually controlled annealing process. © 2014 Elsevier B.V. All rights reserved.1215558Léonard, F., Talin, A.A., (2011) Nat. Nanotechnol., 6, pp. 773-783Robinson, J.A., Labella, M., Zhu, M., Hollander, M., Kasarda, R., Hughes, Z., Trumbull, K., Snyder, D., (2011) Appl. Phys. Lett., 98, pp. 0531031-0531033Xia, F., Perebeinos, V., Lin, Y.-M., Wu, Y., Avouris, P., (2011) Nat. Nanotechnol., 6, pp. 179-184Knoch, J., Chen, Z., Appenzeller, J., (2012) IEEE Trans. Nanotechnol., 11, pp. 513-519Krupke, R., Hennrich, F., Kappes, M.M., Löhneysen, H.V., (2004) Nano Lett., 4, pp. 1395-1399Leon, J., Flacker, A., Vaz, A.R., Verissimo, C., Moraes, M.B., Moshkalev, S.A., (2010) J. Nanoscience. Nanotechnol., 10, pp. 6234-6239Gelamo, R.V., Rouxinol, F.P., Verissimo, C., Vaz, A.R., Moraes, M.A.B., Moshkalev, S.A., (2009) Chem. Phys. Lett., 482, pp. 302-306Savu, R., Silveira, J.V., Flacker, A., Vaz, A.R., Joanni, E., Pinto, A.C., Gobbi, A.L., Moshkalev, S.A., (2012) Rev. Sci. Instrum., 83. , 055104-6Ermakov, V., Alaferdov, A., Vaz, A., Baranov, A.V., Moshkalev, S., (2013) Nanotechnology, 24, pp. 1553011-15530110Lee, J.-O., Park, C., Kim, J.-J., Kim, J., Park, J.W., Yoo, K.-H., (2000) J. Phys. D: Appl. Phys., 33, pp. 1953-1956Rouxinol, F., Gelamo, R., Amici, R.G., Vaz, A., Moshkalev, S., (2010) Appl. Phys. Lett., 97, pp. 2531041-2531043Huang, F.M., Yue, K.T., Tan, P.H., Zhang, S.L., Shi, Z.J., Zhou, X.H., Gu, Z.N., (1998) J. Appl. Phys., 84, pp. 4022-4024Cancado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Primenta, M.A., (2006) Appl. Phys. Lett., 88, p. 163106Moshkalev, S.A., J. Nanoelectr. Optoelectr., , in pressHsu, I.-K., Pettes, M.T., Aykol, M., Shi, L., Cronin, S.B., (2010) J. Appl. Phys., 108, p. 08430
