218 research outputs found
Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures
Large RNA molecules often carry multiple functional domains whose spatial
arrangement is an important determinant of their function. Pre-mRNA splicing,
furthermore, relies on the spatial proximity of the splice junctions that can
be separated by very long introns. Similar effects appear in the processing of
RNA virus genomes. Albeit a crude measure, the distribution of spatial
distances in thermodynamic equilibrium therefore provides useful information on
the overall shape of the molecule can provide insights into the interplay of
its functional domains. Spatial distance can be approximated by the
graph-distance in RNA secondary structure. We show here that the equilibrium
distribution of graph-distances between arbitrary nucleotides can be computed
in polynomial time by means of dynamic programming. A naive implementation
would yield recursions with a very high time complexity of O(n^11). Although we
were able to reduce this to O(n^6) for many practical applications a further
reduction seems difficult. We conclude, therefore, that sampling approaches,
which are much easier to implement, are also theoretically favorable for most
real-life applications, in particular since these primarily concern long-range
interactions in very large RNA molecules.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Scale setting for alpha_s beyond leading order
We present a general procedure for incorporating higher-order information
into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In
particular, we show how to apply this prescription when the leading coefficient
or coefficients in a series in the strong coupling alpha_s are anomalously
small and the original prescription can give an unphysical scale. We give a
general method for computing an optimum scale numerically, within dimensional
regularization, and in cases when the coefficients of a series are known. We
apply it to the heavy quark mass and energy renormalization in lattice NRQCD,
and to a variety of known series. Among the latter, we find significant
corrections to the scales for the ratio of e+e- to hadrons over muons, the
ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width,
and the top decay width. Scales for the latter two decay widths, expressed in
terms of MSbar masses, increase by factors of five and thirteen, respectively,
substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Expression, purification and characterization of the soluble Cu-A domain of cytochrome c oxidase of Paracoccus versutus
Macromolecular Biochemistr
Low drive field amplitude for improved image resolution in magnetic particle imaging
Purpose: Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution. Methods: The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags. Results: The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies. Conclusions: To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with molecular contrast. © 2016 American Association of Physicists in Medicine
Contracaecum rudolphii Hartwich (Nematoda, Anisakidae) from the Neotropical Cormorant, Phalacrocorax brasilianus (Gmelin) (Aves, Phalacrocoracidae) in southern Brazil
Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements
Large scale structure and cosmolog
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev
7191/Mar294
Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale
- …
