9,327 research outputs found
Higher Curvature Gravity and the Holographic fluid dual to flat spacetime
Recent works have demonstrated that one can construct a (d+2) dimensional
solution of the vacuum Einstein equations that is dual to a (d+1) dimensional
fluid satisfying the incompressible Navier-Stokes equations. In one important
example, the fluid lives on a fixed timelike surface in the flat Rindler
spacetime associated with an accelerated observer. In this paper, we show that
the shear viscosity to entropy density ratio of the fluid takes the universal
value 1/4\pi in a wide class of higher curvature generalizations to Einstein
gravity. Unlike the fluid dual to asymptotically anti-de Sitter spacetimes,
here the choice of gravitational dynamics only affects the second order
transport coefficients. We explicitly calculate these in five-dimensional
Einstein-Gauss-Bonnet gravity and discuss the implications of our results.Comment: 13 pages; v2: modified abstract, added references; v3: added
clarifying comments, modified discussio
B-L Cosmic Strings in Heterotic Standard Models
E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth
Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken
N=1 supersymmetric theories with the exact matter spectrum of the MSSM,
including three right-handed neutrinos and one Higgs-Higgs conjugate pair of
supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge
group of the standard model augmented by an additional gauged U(1)_{B-L}. Their
minimal content requires that the B-L symmetry be spontaneously broken by a
vacuum expectation value of at least one right-handed sneutrino. The soft
supersymmetry breaking operators can induce radiative breaking of the B-L gauge
symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is
shown that U(1)_{B-L} cosmic strings occur in this context, potentially with
both bosonic and fermionic superconductivity. We present a numerical analysis
that demonstrates that boson condensates can, in principle, form for theories
of this type. However, the weak Yukawa and gauge couplings of the right-handed
sneutrino suggests that bosonic superconductivity will not occur in the
simplest vacua in this context. The electroweak phase transition also disallows
fermion superconductivity, although substantial bound state fermion currents
can exist.Comment: 41 pages, 5 figure
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term
We propose a simple modification of the no-scale supergravity Wess-Zumino
model of Starobinsky-like inflation to include a Polonyi term in the
superpotential. The purpose of this term is to provide an explicit mechanism
for supersymmetry breaking at the end of inflation. We show how successful
inflation can be achieved for a gravitino mass satisfying the strict upper
bound TeV, with favoured values
TeV. The model suggests that SUSY may be discovered in collider physics
experiments such as the LHC or the FCC.Comment: 13 pages, 4 figure
Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation
Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can enhance high precipitation gradients, leading to a systematic absence of long-range patterns
Family coordination in families who have a child with autism spectrum disorder
Little is known about the interactions of families where there is a child with autism spectrum disorder (ASD). The present study applies the Lausanne Trilogue Play (LTP) to explore both its applicability to this population as well as to assess resources and areas of deficit in these families. The sample consisted of 68 families with a child with ASD, and 43 families with a typically developing (TD) child. With respect to the global score for family coordination there were several negative correlations: the more severe the symptoms (based on the child’s ADOS score), the more family coordination was dysfunctional. This correlation was particularly high when parents had to play together with the child. In the parts in which only one of the parents played actively with the child, while the other was simply present, some families did achieve scores in the functional range, despite the child’s symptom severity. The outcomes are discussed in terms of their clinical implications both for assessment and for interventio
Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain
A review of information flow diagrammatic models for product-service systems
A product-service system (PSS) is a combination of products and services to
create value for both customers and manufacturers. Modelling a PSS based on
function orientation offers a useful way to distinguish system inputs and
outputs with regards to how data are consumed and information is used, i.e.
information flow. This article presents a review of diagrammatic information
flow tools, which are designed to describe a system through its functions. The
origin, concept and applications of these tools are investigated, followed by an
analysis of information flow modelling with regards to key PSS properties. A
case study of selection laser melting technology implemented as PSS will then be
used to show the application of information flow modelling for PSS design. A
discussion based on the usefulness of the tools in modelling the key elements of
PSS and possible future research directions are also presented
- …
