4 research outputs found
What Policies Address Both the Coronavirus Crisis and the Climate Crisis?
The coronavirus pandemic has led many countries to initiate unprecedented economic recovery packages. Policymakers tackling the coronavirus crisis have also been encouraged to prioritize policies which help mitigate a second, looming crisis: climate change. We identify and analyze policies that combat both the coronavirus crisis and the climate crisis. We analyze both the long-run climate impacts from coronavirus-related economic recovery policies, and the impacts of long-run climate policies on economic recovery and public health post-recession. We base our analysis on data on emissions, employment and corona-related layoffs across sectors, and on previous research. We show that, among climate policies, labor-intensive green infrastructure projects, planting trees, and in particular pricing carbon coupled with reduced labor taxation boost economic recovery. Among coronavirus policies, aiding services sectors (leisure services such as restaurants and culture, or professional services such as technology), education and the healthcare sector appear most promising, being labor intensive yet low-emission—if such sectoral aid is conditioned on being directed towards employment and on low-carbon supply chains. Large-scale green infrastructure projects and green R&D investment, while good for the climate, are unlikely to generate enough employment to effectively alleviate the coronavirus crisis
The Coral Trait Database, a curated database of trait information for coral species from the global oceans.
Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research
