31 research outputs found

    On renormalization group flows and the a-theorem in 6d

    Full text link
    We study the extension of the approach to the a-theorem of Komargodski and Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton effective action is obtained up to 6th order in derivatives. The anomaly flow a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this action. It then appears at order p^6 in the low energy limit of n-point scattering amplitudes of the dilaton for n > 3. The detailed structure with the correct anomaly coefficient is confirmed by direct calculation in two examples: (i) the case of explicitly broken conformal symmetry is illustrated by the free massive scalar field, and (ii) the case of spontaneously broken conformal symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the latter example, the dilaton is a dynamical field so 4-derivative terms in the action also affect n-point amplitudes at order p^6. The calculation in the (2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4. Given the confirmation in two distinct models, we attempt to use dispersion relations to prove that the anomaly flow is positive in general. Unfortunately the 4-point matrix element of the Euler anomaly is proportional to stu and vanishes for forward scattering. Thus the optical theorem cannot be applied to show positivity. Instead the anomaly flow is given by a dispersion sum rule in which the integrand does not have definite sign. It may be possible to base a proof of the a-theorem on the analyticity and unitarity properties of the 6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Development and characterization of a vector system based on the simian adenovirus type 25

    No full text
    Technological versatility and the humoral and cellular immune response induction capacity have conditioned wide spread of adenoviral vectors as vaccine and gene therapy drugs. However, vaccination with Sputnik V made a significant portion of the population immune to the types 5 and 26 (Ad5 and Ad26) recombinant human adenovirus vectors, which are some of the most frequently used bases for candidate vaccines. Today, vaccine designers tend to select alternative adenovirus serotypes as platforms to develop vaccines against new pathogens on. A good example is simian adenovirus type 25 (SAd25), which belongs to subgroup E. It is genetically distant from Ad5 and exhibits extremely low seroprevalence in human beings, which makes it an appealing alternative vaccine vector. The purpose of this work was to design and study a new vaccine platform based on simian adenovirus type 25. We relied on the advanced methods of molecular biology and virology to construct and make recombinant adenoviruses; the phylogenetic analysis in the context of this study was enabled with bioinformatic methods. The resulting recombinant adenoviral vector can effectively replicate itself in the HEK293 cell line (human embryonic kidney cells). This work substantiates the expediency of further investigation into the SAd25 vector as a platform for development of the prevention vaccines against various infectious diseases.</jats:p
    corecore