2,118 research outputs found
A systematic review on health resilience to economic crises
Background The health effects of recent economic crises differ markedly by population group. The objective of this systematic review is to examine evidence from longitudinal studies on factors influencing resilience for any health outcome or health behaviour among the general population living in countries exposed to financial crises. Methods We systematically reviewed studies from six electronic databases (EMBASE, Global Health, MEDLINE, PsycINFO, Scopus, Web of Science) which used quantitative longitudinal study designs and included: (i) exposure to an economic crisis; (ii) changes in health outcomes/behaviours over time; (iii) statistical tests of associations of health risk and/or protective factors with health outcomes/behaviours. The quality of the selected studies was appraised using the Quality Assessment Tool for Quantitative Studies. PRISMA reporting guidelines were followed. Results From 14,584 retrieved records, 22 studies met the eligibility criteria. These studies were conducted across 10 countries in Asia, Europe and North America over the past two decades. Ten socio-demographic factors that increased or protected against health risk were identified: gender, age, education, marital status, household size, employment/occupation, income/ financial constraints, personal beliefs, health status, area of residence, and social relations. These studies addressed physical health, mortality, suicide and suicide attempts, mental health, and health behaviours. Women’s mental health appeared more susceptible to crises than men’s. Lower income levels were associated with greater increases in cardiovascular disease, mortality and worse mental health. Employment status was associated with changes in mental health. Associations with age, marital status, and education were less consistent, although higher education was associated with healthier behaviours. Conclusions Despite widespread rhetoric about the importance of resilience, there was a dearth of studies which operationalised resilience factors. Future conceptual and empirical research is needed to develop the epidemiology of resilience
Recommended from our members
Search for physics beyond the standard model in events with τ leptons, jets, and large transverse momentum imbalance in pp collisions at [Formula: see text].
A search for physics beyond the standard model is performed with events having one or more hadronically decaying τ leptons, highly energetic jets, and large transverse momentum imbalance. The data sample corresponds to an integrated luminosity of 4.98 fb-1 of proton-proton collisions at [Formula: see text] collected with the CMS detector at the LHC in 2011. The number of observed events is consistent with predictions for standard model processes. Lower limits on the mass of the gluino in supersymmetric models are determined
Recommended from our members
Measurement of masses in the [Formula: see text] system by kinematic endpoints in pp collisions at [Formula: see text].
A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for [Formula: see text] events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at [Formula: see text]. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of [Formula: see text] is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics
Recommended from our members
Measurement of WZ and ZZ production in pp collisions at [Formula: see text] in final states with b-tagged jets.
Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at [Formula: see text][Formula: see text] in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either [Formula: see text], [Formula: see text] or [Formula: see text], [Formula: see text], or [Formula: see text]). The results are based on data corresponding to an integrated luminosity of 18.9 fb[Formula: see text] collected with the CMS detector at the Large Hadron Collider. The measured cross sections, [Formula: see text] and [Formula: see text], are consistent with next-to-leading order quantum chromodynamics calculations
Recommended from our members
Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at [Formula: see text].
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 5.0[Formula: see text] collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25[Formula: see text] respectively, in the pseudorapidity range [Formula: see text], [Formula: see text] and with an angular separation [Formula: see text], is [Formula: see text][Formula: see text]. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics
Two-stroke scooters are a dominant source of air pollution in many cities.
Fossil fuel-powered vehicles emit significant particulate matter, for example, black carbon and primary organic aerosol, and produce secondary organic aerosol. Here we quantify secondary organic aerosol production from two-stroke scooters. Cars and trucks, particularly diesel vehicles, are thought to be the main vehicular pollution sources. This needs re-thinking, as we show that elevated particulate matter levels can be a consequence of 'asymmetric pollution' from two-stroke scooters, vehicles that constitute a small fraction of the fleet, but can dominate urban vehicular pollution through organic aerosol and aromatic emission factors up to thousands of times higher than from other vehicle classes. Further, we demonstrate that oxidation processes producing secondary organic aerosol from vehicle exhaust also form potentially toxic 'reactive oxygen species'.This work was supported by the Swiss Federal Office for the Environment (FOEN), the Federal Roads Office (FEDRO), the Swiss National Science Foundation (Ambizione PZ00P2_131673, SAPMAV 200021_13016), the EU commission (FP7, COFUND: PSI-Fellow, grant agreement n.° 290605), the UK Natural Environment Research Council (NERC), the French Environment and Energy Management Agency (ADEME, Grant number 1162C00O2) and the Velux Foundation.This is the accepted manuscript version. The final version is available from http://www.nature.com/ncomms/2014/140513/ncomms4749/full/ncomms4749.html
Recommended from our members
Distributions of topological observables in inclusive three- and four-jet events in pp collisions at [Formula: see text][Formula: see text].
This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7[Formula: see text] with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1[Formula: see text]. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MadGraph interfaced with pythia6 displays the overall best agreement with data
Measurement of jet multiplicity distributions in [Formula: see text] production in pp collisions at [Formula: see text].
The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton+jets decay channels using data corresponding to an integrated luminosity of 5.0[Formula: see text]. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the [Formula: see text] production is determined as a function of the additional jet multiplicity in the lepton+jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
- …
