1,756 research outputs found
Influence of hydrated lime on the properties and permanent deformation of the asphalt concrete layers in pavement
Flexible or asphalt concrete pavement is the paving system most widely adopted all over the world. It has been recognized that there are many different types of the factors affecting the performance and durability of asphalt concrete pavement, including the service conditions, such as: the variation of temperature from mild to extremes and the repeated excessive axle loading as well as the inadequate quality of the raw materials. All of these when combined together are going to accelerate the occurrence of distresses in flexible pavement such as permanent deformation and fatigue cracking. As the result, there has an urgent need to enhance the ability of asphalt concrete mixture to resist distresses happened in pavement. Use of additives is one of the techniques adopted to improve pavement properties. It has been found that hydrated lime might be one of the effective additives because it is widely available and relatively cheap compared to other modifiers like polymers. This paper presents an experimental study of the hydrated-lime modified asphalt concrete mixtures. Five different percentages of the hydrated lime additive were investigated, namely (1, 1.5, 2, 2.5 and 3 percent). The hydrated lime additive was used as partial replacement of limestone filler by total weight of the aggregate. The designed Hot Mix Asphalt (HMA) concretes are for the application of three pavement courses, i.e. Surface, Leveling and Base. These mixtures are designed and tested following Marshall procedure and uniaxial repeated loading to evaluate permanent deformation at different temperatures of 20oC, 40oC and 60oC. The experimental results show that the addition of hydrated lime as a partial replacement of ordinary limestone mineral filler results a significant improvement on mechanical properties and the resistant to permanent deformation of the designed asphalt concrete mixture
Recommended from our members
Response Modification Factors for Concrete Bridges in Europe
The paper presents a methodology for evaluating the actual response modification factors (q or R) of bridges and applies it to seven concrete bridges typical of the stock found in southern Europe. The usual procedure for analytically estimating the q-factor is through pushover curves derived for the bridge in (at least) its longitudinal and transverse directions. The shape of such curves depends on the seismic energy dissipation mechanism of the bridge; hence, bridges are assigned to two categories, those with inelastically responding piers and those whose deck is supported through bearings on strong, elastically responding piers. For bridges with yielding piers, the final value of the q-factor is found as the product of the overstrength-dependent component (qs) and the ductility-dependent component (qμ), both estimated from the pertinent pushover curve. For bridges with bearings and nonyielding piers of the wall type, an equivalent q-factor is proposed, based on spectral accelerations at failure and at design level. In this paper, pushover curves are also derived for an arbitrary angle of incidence of seismic action using a procedure recently developed by the authors, to investigate the influence of the shape of the pushover curve on the estimation of q-factors. It is found that in all cases the available force reduction factors are higher than those used for design to either Eurocode 8 or AASHTO specifications
Shear friction strength of monolithic concrete interfaces
YesThis paper presents an integrated model for shear friction strength of monolithic concrete interfaces derived from the upper-bound theorem of concrete plasticity. The model accounts for the effects of applied axial stresses and transverse reinforcement on the shear friction action at interfacial shear cracks. Simple equations were also developed to generalize the effectiveness factor for compression, ratio of effective tensile to compressive strengths and angle of concrete friction. The reliability of the proposed model was then verified through comparisons with previous empirical equations and 103 push-off test specimens compiled from different sources in the literature.
The previous equations considerably underestimate the concrete shear transfer capacity and the underestimation is notable for the interfaces subjected to additional axial stresses. The proposed model provides superior accuracy in predicting the shear friction strength, resulting in a mean between experimental and predicted friction strengths of 0.97 and least scatter. Moreover, the proposed model has consistent trends with test results in evaluating the effect of various parameters on the shear friction strength
Main flexible pavement and mix design methods in Europe and challenges for the development of an european method
Pavement and mix design represent one of the key components within the life cycle of a road infrastructure, with links to political, economic, technical, societal and environmental issues. Recent researches related to the characteristics of materials and associated behavior models both for materials and pavement, made it appropriate to consider updating current pavement design methods, and especially in the USA this has already been in process while in Europe uses of the methods developed in the early 1970s. Thus, this paper firstly presents a brief historical overview of pavement design methods, highlighting early limitations of old empirical methods. Afterwards, French, UK and Shell methods currently in use in Europe will be presented, underlining their main components in terms of methodology, traffic, climatic conditions and subgrade. The asphalt mix design and modeling in Europe are presented with their inclusion in the pavement design methods. Finally, the main challenges for the development of a European pavement design method are presented as well as the recent research developments that can be used for that methodThe second author would like to express the support of Portuguese
National Funding Agency for Science, Research and
Technology (FCT) through scholarship SFRH/BSAB/114415/
2016. This research did not receive any specific grant from
funding agencies in the public, commercial, or not-for-profit
sectors.info:eu-repo/semantics/publishedVersio
Recommended from our members
Performance-Based Seismic Design and Assessment of Bridges
Current trends in the seismic design and assessment of bridges are discussed, with emphasis on two procedures that merit some particular attention, displacement-based procedures and deformation-based procedures. The available performance-based methods for bridges are critically reviewed and a number of critical issues are identified, which arise in all procedures. Then two recently proposed methods are presented in some detail, one based on the direct displacement-based design approach, using equivalent elastic analysis and properly reduced displacement spectra, and one based on the deformation-based approach, which involves a type of partially inelastic response-history analysis for a set of ground motions and wherein pier ductility is included as a design parameter, along with displacement criteria. The current trends in seismic assessment of bridges are then summarised and the more rigorous assessment procedure, i.e. nonlinear dynamic response-history analysis, is used to assess the performance of bridges designed to the previously described procedures. Finally some comments are offered on the feasibility of including such methods in the new generation of bridge codes
Flood fragility analysis for bridges with multiple failure modes
Bridges are one of the most important infrastructure systems that provide public and economic bases for humankind. It is also widely known that bridges are exposed to a variety of flood-related risk factors such as bridge scour, structural deterioration, and debris accumulation, which can cause structural damage and even failure of bridges through a variety of failure modes. However, flood fragility has not received as much attention as seismic fragility despite the significant amount of damage and costs resulting from flood hazards. There have been few research efforts to estimate the flood fragility of bridges considering various flood-related factors and the corresponding failure modes. Therefore, this study proposes a new approach for bridge flood fragility analysis. To obtain accurate flood fragility estimates, reliability analysis is performed in conjunction with finite element analysis, which can sophisticatedly simulate the structural response of a bridge under a flood by accounting for flood-related risk factors. The proposed approach is applied to a numerical example of an actual bridge in Korea. Flood fragility curves accounting for multiple failure modes, including lack of pier ductility or pile ductility, pier rebar rupture, pile rupture, and deck loss, are derived and presented in this study.ope
Recommended from our members
Dynamic Effects of Turbulent Crosswind on the Serviceability State of Vibrations of a Slender Arch Bridge Including Wind-Vehicle-Bridge Interaction
The use of high-performance materials in bridges is leading to structures that are more susceptible to wind- and traffic-induced vibrations due to the reduction in the weight and the increment of the slenderness in the deck. Bridges can experience considerable vibration due to both moving vehicles and wind actions that affect the comfort of the bridge users and the driving safety. This work explored the driving safety and comfort in a very slender arch bridge under turbulent wind and vehicle actions, as well as the comfort of pedestrians. A fully coupled wind–vehicle–bridge interaction model based on the direct integration of the system of dynamics was developed. In this model, the turbulent crosswind is represented by means of aerodynamic forces acting on the vehicle and the bridge. The vehicle is modeled as a multibody system that interacts with the bridge by means of moving contacts that also simulate road-surface irregularities. A user element is presented with generality and implemented using a general-purpose finite-element software package to incorporate the aeroelastic components of the wind forces, which allows modeling and solving of the wind–vehicle–bridge interaction in the time domain without the need for using the modal superposition technique. An extensive computational analysis program is performed on the basis of a wide range of turbulent crosswind speeds. The results show that bridge vibration is significantly affected by the crosswind in terms of peak acceleration and frequency content when the crosswind intensity is significant. The crosswind has more effect on the ride comfort of the vehicle in the lateral direction and, consequently, on its safety in terms of overturning accidents
Effects of truck traffic on top-down fatigue cracking performance of flexible pavements using a new mechanics-based analysis framework
The mechanics-based analysis framework predicts top-down fatigue cracking initiation time in asphalt concrete pavements by utilising fracture mechanics and mixture morphology-based property. To reduce the level of complexity involved, traffic data were characterised and incorporated into the framework using the equivalent single axle load (ESAL) approach. There is a concern that this kind of simplistic traffic characterisation might result in erroneous performance predictions and pavement structural designs. This paper integrates axle load spectra and other traffic characterisation parameters into the mechanics-based analysis framework and studies the impact these traffic characterisation parameters have on predicted fatigue cracking performance. The traffic characterisation inputs studied are traffic growth rate, axle load spectra, lateral wheel wander and volume adjustment factors. For this purpose, a traffic integration approach which incorporates Monte Carlo simulation and representative traffic characterisation inputs was developed. The significance of these traffic characterisation parameters was established by evaluating a number of field pavement sections. It is evident from the results that all the traffic characterisation parameters except truck wheel wander have been observed to have significant influence on predicted top-down fatigue cracking performance
Development of Bridge Column Longitudinal Reinforcement in Oversized Pile Shafts
Publisher Copyright: © 2016 American Society of Civil Engineers.This paper presents an experimental investigation to determine the embedment length required for longitudinal reinforcement in a bridge column extending into an oversized pile shaft, and the amount of transverse reinforcement required for the pile shaft to prevent premature bar anchorage failure due to concrete splitting induced by bar slip. Four full-scale column-oversized pile assemblies were tested under quasi-static cyclic lateral loading. The test specimens had different embedment lengths for the column reinforcement, different amounts of transverse reinforcement in the piles, different sizes of longitudinal bars, ranging from No. 8 to No. 18 (25 to 57 mm) bars, and different column-to-pile diameter ratios. All column-pile assemblies behaved in a ductile manner with plastic deformation occurring near the base of the columns despite some cone-shaped fractures and tensile splitting cracks occurring in the top portion of the piles. The test results show that the embedment length for the column reinforcement can be significantly reduced as compared to that required in current design specifications. The study also shows that an engineered steel casing designed according to a formula proposed here can effectively confine the pile shaft and significantly reduce splitting cracks.Peer reviewe
Numerical simulation of barge impact on a continuous girder bridge and bridge damage detection
Vessel collisions on bridge piers have been frequently reported. As many bridges are vital in transportation networks and serve as lifelines, bridge damage might leads to catastrophic consequences to life and economy. Therefore it is of great importance to protect bridge structures, especially bridge piers, against vessel impacts. Many researches have been conducted to predict vessel impact loads on bridge piers, and to design bridge piers or additional protective structures to resist such impact loads. Studies on assessing the bridge conditions after a vessel impact are, however, very limited. Current practice basically uses visual inspections, which not only requires very experienced engineers to perform the inspection in order to obtain creditable assessment, but also is often very difficult to inspect the underwater pier conditions. Therefore it is necessary to develop methods to give efficient, quantitative and reliable assessment of bridge conditions under ambient conditions after a vessel impact. This study explores the feasibility of using vibration measurements to quickly detect bridge conditions after a vessel impact.The study consists of three parts. First, a detailed numerical model of an example bridge structure is developed to calculate the vibrations under ambient hydrodynamic force. Then the model is used to simulate vessel impact on bridge pier and predict the pier damage. The vibration response analysis of the damaged bridge model is performed again in the third step to simulate vibration responses of the damaged bridge under ambient conditions. Using the vibration data obtained before and after vessel impact, the bridge vibration parameters such as vibration frequencies and mode shapes are extracted by using the frequency domain decomposition method. The bridge condition will then be identified through the changes in bridge vibration parameters and compared with the damage observed in the impact simulation. It is found that this method is capable of estimating bridge damage condition after barge impact accident
- …
