262 research outputs found
Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and "Scala Naturae"
Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials
Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating.ope
Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria
Functional morphological adaptation is an implicit assumption across many ecological studies. However, despite a few pioneering
attempts to link bacterial form and function, functional morphology is largely unstudied in prokaryotes. One intriguing
candidate for analysis is bacterial shape, as multiple lines of theory indicate that cell shape and motility should be strongly
correlated. Here we present a large-scale use of modern phylogenetic comparative methods to explore this relationship across
325 species of the phylum Firmicutes. In contrast to clear predictions from theory, we show that cell shape and motility are not
coupled, and that transitions to and from flagellar motility are common and strongly associated with lifestyle (free-living or
host-associated). We find no association between shape and lifestyle, and contrary to recent evidence, no indication that shape
is associated with pathogenicity. Our results suggest that the independent evolution of shape and motility in this group might
allow a greater evolutionary flexibility
Cost effectiveness of potential ART adherence monitoring interventions in sub-saharan Africa
Background Interventions based around objective measurement of adherence to antiretroviral drugs for HIV have potential to improve adherence and to enable differentiation of care such that clinical visits are reduced in those with high adherence. It would be useful to understand the approximate upper limit of cost that could be considered for such interventions of a given effectiveness in order to be cost effective. Such information can guide whether to implement an intervention in the light of a trial showing a certain effectiveness and cost. Methods An individual-based model, calibrated to Zimbabwe, which incorporates effects of adherence and resistance to antiretroviral therapy, was used to model the potential impact of adherence monitoring-based interventions on viral suppression, death rates, disability adjusted life years and costs. Potential component effects of the intervention were: enhanced average adherence when on ART, reduced risk of ART discontinuation, and reduced risk of resistance acquisition. We considered a situation in which viral load monitoring is not available and one in which it is. In the former case, it was assumed that care would be differentiated based on the adherence level, with fewer clinic visits in those demonstrated to have high adherence. In the latter case, care was assumed to be primarily differentiated according to viral load level. The maximum intervention cost required to be cost effective was calculated based on a cost effectiveness threshold of 50 per person-year on ART, mainly driven by the cost savings of differentiation of care. In the presence of viral load monitoring availability, an intervention with a similar effect on viral load suppression was cost-effective when costing 32 per year, depending on whether the adherence intervention is used to reduce the level of need for viral load measurement. Conclusion The cost thresholds identified suggest that there is clear scope for adherence monitoringbased interventions to provide net population health gain, with potential cost-effective use in situations where viral load monitoring is or is not available. Our results guide the implementation of future adherence monitoring interventions found in randomized trials to have health benefit
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Mesenchymal cell survival in airway and interstitial pulmonary fibrosis
Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-β1 (TGF-β1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-γ) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis
Large Isoforms of UNC-89 (Obscurin) Are Required for Muscle Cell Architecture and Optimal Calcium Release in Caenorhabditis elegans
Calcium, a ubiquitous intracellular signaling molecule, controls a diverse array of cellular processes. Consequently, cells have developed strategies to modulate the shape of calcium signals in space and time. The force generating machinery in muscle is regulated by the influx and efflux of calcium ions into the muscle cytoplasm. In order for efficient and effective muscle contraction to occur, calcium needs to be rapidly, accurately and reliably regulated. The mechanisms underlying this highly regulated process are not fully understood. Here, we show that the Caenorhabditis elegans homolog of the giant muscle protein obscurin, UNC-89, is required for normal muscle cell architecture. The large immunoglobulin domain-rich isoforms of UNC-89 are critical for sarcomere and sarcoplasmic reticulum organization. Furthermore, we have found evidence that this structural organization is crucial for excitation-contraction coupling in the body wall muscle, through the coordination of calcium signaling. Thus, our data implicates UNC-89 in maintaining muscle cell architecture and that this precise organization is essential for optimal calcium mobilization and efficient and effective muscle contraction
Review of laser speckle contrast techniques for visualizing tissue perfusion
When a diffuse object is illuminated with coherent laser light, the backscattered light will form an interference pattern on the detector. This pattern of bright and dark areas is called a speckle pattern. When there is movement in the object, the speckle pattern will change over time. Laser speckle contrast techniques use this change in speckle pattern to visualize tissue perfusion. We present and review the contribution of laser speckle contrast techniques to the field of perfusion visualization and discuss the development of the techniques
Suramin Alleviates Glomerular Injury and Inflammation in the Remnant Kidney
Background: Recently, we demonstrated that suramin, a compound that inhibits the interaction of multiple cytokines/ growth factors with their receptors, inhibits activation and proliferation of renal interstitial fibroblasts, and attenuates the development of renal interstitial fibrosis in the murine model of unilateral ureteral obstruction (UUO). However, it remains unclear whether suramin can alleviate glomerular and vascular lesions, which are not typical pathological changes in the UUO model. So we tested the efficacy of suramin in the remnant kidney after 5/6 nephrectomy, a model characterized by the slow development of glomerulosclerosis, vascular sclerosis, tubulointerstitial fibrosis and renal inflammation, mimicking human disease. Methods/Findings: 5/6 of normal renal mass was surgically ablated in male rats. On the second week after surgery, rats were randomly divided into suramin treatment and non-treatment groups. Suramin was given at 10 mg/kg once per week for two weeks. In the remnant kidney of mice receiving suramin, glomerulosclerosis and vascular sclerosis as well as inflammation were ameliorated. Suramin also attenuated tubular expression of two chemokines, monocyte chemoattractant protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). After renal mass ablation, several intracellular molecules associated with renal fibrosis, including NF-kappaB p65, Smad-3, signal transducer and activator of transcription-3 and extracellular regulated kinase 1/2, are phosphorylated; suramin treatment inhibited thei
- …
