2,716 research outputs found
What went wrong? The flawed concept of cerebrospinal venous insufficiency
In 2006, Zamboni reintroduced the concept that chronic impaired venous outflow of the central nervous system is associated with multiple sclerosis (MS), coining the term of chronic cerebrospinal venous insufficiency ('CCSVI'). The diagnosis of 'CCSVI' is based on sonographic criteria, which he found exclusively fulfilled in MS. The concept proposes that chronic venous outflow failure is associated with venous reflux and congestion and leads to iron deposition, thereby inducing neuroinflammation and degeneration. The revival of this concept has generated major interest in media and patient groups, mainly driven by the hope that endovascular treatment of 'CCSVI' could alleviate MS. Many investigators tried to replicate Zamboni's results with duplex sonography, magnetic resonance imaging, and catheter angiography. The data obtained here do generally not support the 'CCSVI' concept. Moreover, there are no methodologically adequate studies to prove or disprove beneficial effects of endovascular treatment in MS. This review not only gives a comprehensive overview of the methodological flaws and pathophysiologic implausibility of the 'CCSVI' concept, but also summarizes the multimodality diagnostic validation studies and open-label trials of endovascular treatment. In our view, there is currently no basis to diagnose or treat 'CCSVI' in the care of MS patients, outside of the setting of scientific research
Influence of hyperhomocysteinemia on the cellular redox state - Impact on homocysteine-induced endothelial dysfunction
Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. An increasing body of evidence has implicated oxidative stress as being contributory to homocysteines deleterious effects on the vasculature. Elevated levels of homocysteine may lead to increased generation of superoxide by a biochemical mechanism involving nitric oxide synthase, and, to a lesser extent, by an increase in the chemical oxidation of homocysteine and other aminothiols in the circulation. The resultant increase in superoxide levels is further amplified by homocysteinedependent alterations in the function of cellular antioxidant enzymes such as cellular glutathione peroxidase or extracellular superoxide dismutase. One direct clinical consequence of elevated vascular superoxide levels is the inactivation of the vasorelaxant messenger nitric oxide, leading to endothelial dysfunction. Scavenging of superoxide anion by either superoxide dismutase or 4,5-dihydroxybenzene 1,3-disulfonate (Tiron) reverses endothelial dysfunction in hyperhomocysteinemic animal models and in isolated aortic rings incubated with homocysteine. Similarly, homocysteineinduced endothelial dysfunction is also reversed by increasing the concentration of the endogenous antioxidant glutathione or overexpressing cellular glutathione peroxidase in animal models of mild hyperhomocysteinemia. Taken together, these findings strongly suggest that the adverse vascular effects of homocysteine are at least partly mediated by oxidative inactivation of nitric oxide
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells
The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited. Immunolabeling reveals the generation of ceramide-enriched domains linked to a cell morphological change, while the use of a neutral sphingomyelinase inhibitor greatly delays the process after the morphological change, and lipid flip-flop is significantly reduced. These facts point to three major checkpoints in the process: first the upstream exchange of calcium and potassium, then ceramide domain formation, and finally the downstream scramblase activation necessary for cell lysis. In addition, partial non-cytotoxic cholesterol depletion of red blood cells accelerates the process as the morphological change occurs faster. Cholesterol could have a role in modulating the properties of the ceramide-enriched domains. This work is relevant in the context of cell death, heavy metal toxicity and sphingolipid signaling.AGA was a predoctoral student supported by the Basque Government and later by the University of the Basque Country (UPV/EHU). This work was also supported in part by grants from the Spanish Government (FEDER/MINECO BFU 2015-66306-P to F.M.G. and A.A.) and the Basque Government (IT849-13 to F.M.G. and IT838-13 to A.A.), and by the Swiss National Science Foundation
Recommended from our members
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments.
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}
Recent Advances in Graph Partitioning
We survey recent trends in practical algorithms for balanced graph
partitioning together with applications and future research directions
Expression of Drug Targets in Patients Treated with Sorafenib, Carboplatin and Paclitaxel
Introduction: Sorafenib, a multitarget kinase inhibitor, targets members of the mitogen-activated protein kinase (MAPK) pathway and VEGFR kinases. Here we assessed the association between expression of sorafenib targets and biomarkers of taxane sensitivity and response to therapy in pre-treatment tumors from patients enrolled in ECOG 2603, a phase III comparing sorafenib, carboplatin and paclitaxel (SCP) to carboplatin, paclitaxel and placebo (CP). Methods: Using a method of automated quantitative analysis (AQUA) of in situ protein expression, we quantified expression of VEGF-R2, VEGF-R1, VEGF-R3, FGF-R1, PDGF-Rβ, c-Kit, B-Raf, C-Raf, MEK1, ERK1/2, STMN1, MAP2, EB1 and Bcl-2 in pretreatment specimens from 263 patients. Results: An association was found between high FGF-R1 and VEGF-R1 and increased progression-free survival (PFS) and overall survival (OS) in our combined cohort (SCP and CP arms). Expression of FGF-R1 and VEGF-R1 was higher in patients who responded to therapy ((CR+PR) vs. (SD+PD+ un-evaluable)). Conclusions: In light of the absence of treatment effect associated with sorafenib, the association found between FGF-R1 and VEGF-R1 expression and OS, PFS and response might reflect a predictive biomarker signature for carboplatin/paclitaxel-based therapy. Seeing that carboplatin and pacitaxel are now widely used for this disease, corroboration in another cohort might enable us to improve the therapeutic ratio of this regimen. © 2013 Jilaveanu et al
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
