145 research outputs found

    The Epidemiology and Clinical Spectrum of Melioidosis: 540 Cases from the 20 Year Darwin Prospective Study

    Get PDF
    Melioidosis is an occupationally and recreationally acquired infection important in Southeast Asia and northern Australia. Recently cases have been reported from more diverse locations globally. The responsible bacterium, Burkholderia pseudomallei, is considered a potential biothreat agent. Risk factors predisposing to melioidosis are well recognised, most notably diabetes. The Darwin prospective melioidosis study has identified 540 cases of melioidosis over 20 years and analysis of the epidemiology and clinical findings provides important new insights into this disease. Risk factors identified in addition to diabetes, hazardous alcohol use and chronic renal disease include chronic lung disease, malignancies, rheumatic heart disease, cardiac failure and age ≥50 years. Half of patients presented with pneumonia and septic shock was common (21%). The decrease in mortality from 30% in the first 5 years of the study to 9% in the last five years is attributed to earlier diagnosis and improvements in intensive care management. Of the 77 fatal cases (14%), all had known risk factors for melioidosis. This supports the most important conclusion of the study, which is that melioidosis is very unlikely to kill a healthy person, provided the infection is diagnosed early and resources are available to provide appropriate antibiotics and critical care where required

    A search for rare B → Dμ+μ− decays

    Get PDF
    A search for rare B→Dμ+μ− decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. No significant signals are observed in the non-resonant μ+μ− modes, and upper limits of B(B0→D ̄ ̄ ̄ ̄0μ+μ−)<5.1×10−8, B(B+→D+sμ+μ−)<3.2×10−8, B(B0s→D ̄ ̄ ̄ ̄0μ+μ−)<1.6×10−7 and fc/fu⋅B(B+c→D+sμ+μ−)<9.6×10−8 are set at the 95\% confidence level, where fc and fu are the fragmentation fractions of a B meson with a c and u quark respectively in proton-proton collisions. Each result is either the first such measurement or an improvement by three orders of magnitude on an existing limit. Separate upper limits are calculated when the muon pair originates from a J/ψ→μ+μ− decay. The branching fraction of B+c→D+sJ/ψ multiplied by the fragmentation-fraction ratio is measured to be fc/fu⋅B(B+c→D+sJ/ψ)=(1.63±0.15±0.13)×10−5, where the first uncertainty is statistical and the second systematic

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Measurement of the Λb0Λ(1520)μ+μ\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} differential branching fraction

    Get PDF
    The branching fraction of the rare decay Λb0Λ(1520)μ+μ\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} is measured for the first time, in the squared dimuon mass intervals, q2q^2, excluding the J/ψJ/\psi and ψ(2S)\psi(2S) regions. The data sample analyzed was collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of $9\ \mathrm{fb}^{-1}.Theresultinthehighest. The result in the highest q^{2}interval, interval, q^{2} >15.0\ \mathrm{GeV}^2/c^4$, where theoretical predictions have the smallest model dependence, agrees with the predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-050.html (LHCb public pages

    Observation of the decay Λb0<i>→</i> χ<sub>c1</sub>pπ<SUP><i>-</i></SUP>

    Get PDF
    The Cabibbo-suppressed decay Λb0χc1pπ\Lambda_b^0\rightarrow\chi_{c1}p\pi^- is observed for the first time using data from proton-proton collisions corresponding to an integrated luminosity of 6fb1^{-1}, collected with the LHCb detector at a centre-of-mass energy of 13TeV. Evidence for the Λb0χc2pπ\Lambda_b^0\rightarrow\chi_{c2}p\pi^- decay is also found. Using the Λb0χc1pK\Lambda_b^0\rightarrow\chi_{c1}pK^- decay as normalisation channel, the ratios of branching fractions are measured to be B(Λb0χc1pπ)B(Λb0χc1pK)=(6.59±1.01±0.22)×102,B(Λb0χc2pπ)B(Λb0χc1pπ)=0.95±0.30±0.04±0.04,B(Λb0χc2pK)B(Λb0χc1pK)=1.06±0.05±0.04±0.04,\begin{array}{rcl} \frac{ \mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}p\pi^-)}{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}pK^-)} & = & (6.59 \pm 1.01 \pm 0.22 ) \times 10^{-2} \,, \frac{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c2}p\pi^-)}{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}p\pi^-)} & = & 0.95 \pm 0.30 \pm 0.04 \pm 0.04 \,, \frac{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c2}pK^-)}{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}pK^-)} & = & 1.06 \pm 0.05 \pm 0.04 \pm 0.04 \,,\end{array} where the first uncertainty is statistical, the second is systematic and the third is due to the uncertainties in the branching fractions of χc1,2J/ψγ\chi_{c1,2}\rightarrow J/\psi\gamma decays

    Precision measurement of CP\it{CP} violation in the penguin-mediated decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi is performed using pppp collision data collected by the LHCb experiment at % at s=13\sqrt{s}=13 TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The CP\it{CP}-violating phase and direct CP\it{CP}-violation parameter are measured to be ϕssˉs=0.042±0.075±0.009\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 rad and λ=1.004±0.030±0.009|\lambda|=1.004\pm 0.030 \pm 0.009 , respectively, assuming the same values for all polarization states of the ϕϕ\phi\phi system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pppp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕssˉs=0.074±0.069\phi_{s\bar{s}s} = -0.074 \pm 0.069 rad and lambda=1.009±0.030|lambda|=1.009 \pm 0.030. This is the most precise study of time-dependent CP\it{CP} violation in a penguin-dominated BB meson decay. The results are consistent with CP\it{CP} symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages

    Observation and branching fraction measurement of the decay Ξb- → Λ0 bπ -

    Get PDF

    Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria

    Get PDF
    Rainfall induced landslides are a common threat to the communities living on dangerous hill-slopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence (WoE) method was applied to calculate the positive (presence of landslides) and negative (absence of landslides) factor weights. A combination of analytical hierarchical process (AHP) and fuzzy membership standardization (weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren’s algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of WoE, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively

    Precise determination of the B-s(0)-B-s(-0) oscillation frequency

    Get PDF
    Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-005.html (LHCb public pages

    Search for the doubly heavy baryons Omega(0)(bc) and Xi(0)(bc) decaying to Lambda(+)(c)pi(-) and Xi(+)(c)pi-

    Get PDF
    Abstract available from publisher's website
    corecore