27 research outputs found
Recombinant Human Growth Hormone and Rosiglitazone for Abdominal Fat Accumulation in HIV- Infected Patients with Insulin Resistance: A Randomized, Double-Blind, Placebo-Controlled, Factorial Trial
Background: Recombinant human growth hormone (rhGH) reduces visceral adipose tissue (VAT) volume in HIV-infected patients but can worsen glucose homeostasis and lipoatrophy. We aimed to determine if adding rosiglitazone to rhGH would abrogate the adverse effects of rhGH on insulin sensitivity (SI) and subcutaneous adipose tissue (SAT) volume. Methodology/Principal Findings: Randomized, double-blind, placebo-controlled, multicenter trial using a 262 factorial design in which HIV-infected subjects with abdominal obesity and insulin resistance were randomized to rhGH 3 mg daily, rosiglitazone 4 mg twice daily, combination rhGH + rosiglitazone, or double placebo (control) for 12 weeks. The primary endpoint was change in SI by frequently sampled intravenous glucose tolerance test from entry to week 12. Body composition was assessed by whole body magnetic resonance imaging (MRI) and dual Xray absorptiometry (DEXA). Seventy-seven subjects were randomized of whom 72 initiated study drugs. Change in SI from entry to week 12 differed across the 4 arms by 1-way ANCOVA (P = 0.02); by pair-wise comparisons, only rhGH (decreasing SI; P = 0.03) differed significantly from control. Changes from entry to week 12 in fasting glucose and glucose area under the curve on 2- hour oral glucose tolerance test differed across arms (1-way ANCOVA P = 0.004), increasing in the rhGH arm relative to control. VAT decreased significantly in the rhGH arms (217.5% in rhGH/rosiglitazone and 222.7% in rhGH) but not in the rosiglitazone alone (22.5%) or control arms (21.9%). SAT did not change significantly in any arm. DEXA results were consistent with the MRI data. There was no significant rhGH x rosiglitazone interaction for any body composition parameter. Conclusions/Significance: The addition of rosiglitazone abrogated the adverse effects of rhGH on insulin sensitivity and glucose tolerance while not significantly modifying the lowering effect of rhGH on VAT
Facile synthesis of silver nanoparticles using Averrhoa bilimbi L and Plum extracts and investigation on the synergistic bioactivity using in vitro models
The bacterial communities (Gram-negative and Gram-positive) form the biofilms which oppose the mode of action of antibiotics and affecting the immune system of the human. These chronic infections related to biofilm are always hard to be cured because of their inherent resistance to both antimicrobial agents and host defense. The present study is devoted to the synthesis of silver nanoparticles (AgNPs) using aqueous extracts of Averrhoa bilimbi leaf and Plum fruit (Prunus bokharensis) and its inhibitory effect on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi. Here, AgNPs) were successfully prepared by green synthesis method obtained by the reduction of silver nitrate into silver ions. The synthesized AgNPs were characterized by UV-Vis Spectroscopy, XRD, FTIR, FESEM-EDAX and DLS analysis. The antimicrobial effects of the two extract were evaluated by the disk diffusion method. The green synthesized AgNPs exhibited good antibacterial activity against both Gram-negative and Gram-positive. They were also analyzed for their significant antibacterial activities against all the test cultures exposed whereas Escherichia coli and Salmonella typhi topped among other test cultures. The anti-proliferative activity of phytochemical mediated synthesis of Ag NPs was investigated for their cytotoxicity in Vero and Human epidermoid larynx carcinoma cell lines (HEp-2) based on their viability using MTT assay. The present study also represents the synergistic bioactivity of silver nanoparticles using in vitro models. © 2019 Sagadevan et al., published by De Gruyter
Facile synthesis of silver nanoparticles using Averrhoa bilimbi L and Plum extracts and investigation on the synergistic bioactivity using in vitro models
Abstract
The bacterial communities (Gram-negative and Gram-positive) form the biofilms which oppose the mode of action of antibiotics and affecting the immune system of the human. These chronic infections related to biofilm are always hard to be cured because of their inherent resistance to both antimicrobial agents and host defense. The present study is devoted to the synthesis of silver nanoparticles (AgNPs) using aqueous extracts of Averrhoa bilimbi leaf and Plum fruit (Prunus bokharensis) and its inhibitory effect on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi. Here, AgNPs) were successfully prepared by green synthesis method obtained by the reduction of silver nitrate into silver ions. The synthesized AgNPs were characterized by UV-Vis Spectroscopy, XRD, FTIR, FESEM-EDAX and DLS analysis. The antimicrobial effects of the two extract were evaluated by the disk diffusion method. The green synthesized AgNPs exhibited good antibacterial activity against both Gram-negative and Gram-positive. They were also analyzed for their significant antibacterial activities against all the test cultures exposed whereas Escherichia coli and Salmonella typhi topped among other test cultures. The anti-proliferative activity of phytochemical mediated synthesis of Ag NPs was investigated for their cytotoxicity in Vero and Human epidermoid larynx carcinoma cell lines (HEp-2) based on their viability using MTT assay. The present study also represents the synergistic bioactivity of silver nanoparticles using in vitro models.</jats:p
Ability of ovarian steroids to regulate the expression of the fibroblast growth factor family in fibroblasts derived from uterine endometrium
Investigation on the material removal and surface roughness in ultraprecision machining of Al/B<inf>4</inf>C/50p metal matrix composites
Metal matrix composites (MMCs) are increasingly applied in various engineering industries because of their distinct physical and mechanical properties. While the precision machining of MMCs is less understood due to their complex microstructure and poor machinability, a comprehensive scientific understanding on their machining mechanics and the associated surface generation mechanisms is of great importance particularly for industrial scale applications of MMCs. This paper presents a simulation and experimental-based holistic investigation on cutting mechanics, material removal and surface roughness in ultraprecision machining of MMCs. B4C/Al2024 is selected as the targeted MMC material in this research. The thermal-mechanical-tribological integrated modelling and analysis are presented to investigate the effects of cutting speed, feed rate and depth of cut (DOC) on the material removal, chip formation mechanics and surface generation process. The simulation results indicate that the machined surface roughness in precision machining of particle reinforced MMCs can be reduced by increasing the cutting speed and decreasing the depth of cut. The surface flow waviness decreases, which contributes to a higher surface quality, while machining with a smaller feed rate. The well-designed machining trials are conducted under the same cutting conditions and process variables as those in simulations, which perform a good agreement with simulation results
