2,226 research outputs found
Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass
To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmospheric nitrogen into the cropping systems and reduce the need for fertilizer applications. Furthermore, when using such wheat and clover-grass mixtures as raw material, addition of urea and other fermentation nutrients produced from fossil fuels can be reduced in the whole ethanol manufacturing chain. Using second generation ethanol technology mixtures of relative proportions of wheat straw and clover-grass (15:85, 50:50, and 85:15) were pretreated by wet oxidation. The results showed that supplementing wheat straw with clover-grass had a positive effect on the ethanol yield in simultaneous saccharification and fermentation experiments, and the effect was more pronounced in inhibitory substrates. The highest ethanol yield (80% of theoretical) was obtained in the experiment with high fraction (85%) of clover-grass. In order to improve the sugar recovery of clover-grass, it should be separated into a green juice (containing free sugars, fructan, amino acids, vitamins and soluble minerals) for direct fermentation and a fibre pulp for pretreatment together with wheat straw. Based on the obtained results a decentralized biorefinery concept for production of biofuel is suggested emphasizing sustainability, localness, and recycling principle
Evolution of Star Formation in the UKIDSS Ultra Deep Survey Field - II. Star Formation as a Function of Stellar Mass Between z=1.46 and z=0.63
We present new results on the evolution of the cosmic star formation rate as a function of stellar mass in the SXDS-UDS field. We make use of narrow-band selected emission line galaxies in four redshift slices between z = 1.46 and z = 0.63, and compute stellar masses by fitting a series of templates to recreate each galaxy's star formation history. We determine mass-binned luminosity functions in each redshift slice, and derive the star formation rate density (rhoSFR) as a function of mass using the [OIII] or [OII] emission lines. We calculate dust extinction and metallicity as a function of stellar mass, and investigate the effect of these corrections on the shape of the overall rhoSFR(M). We find that both these corrections are crucial for determining the shape of the rhoSFR(M), and its evolution with redshift. The fully corrected rhoSFR(M) is a relatively flat distribution, with the normalisation moving towards lower values of rhoSFR with increasing cosmic time/decreasing redshift, and requiring star formation to be truncated across all masses studied here. The peak of rhoSFR(M) is found in the 10^10.5<Msun<10^11.0 mass bin at z = 1.46. In the lower redshift slices the location of the peak is less certain, however low mass galaxies in the range 10^7.0<Msun<10^8.0 play an important part in the overall rhoSFR(M) out to at least z ~ 1.2
Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record
Medvedev and Melott (2007) have suggested that periodicity in fossil
biodiversity may be induced by cosmic rays which vary as the Solar System
oscillates normal to the galactic disk. We re-examine the evidence for a 62
million year (Myr) periodicity in biodiversity throughout the Phanerozoic
history of animal life reported by Rohde & Mueller (2005), as well as related
questions of periodicity in origination and extinction. We find that the signal
is robust against variations in methods of analysis, and is based on
fluctuations in the Paleozoic and a substantial part of the Mesozoic.
Examination of origination and extinction is somewhat ambiguous, with results
depending upon procedure. Origination and extinction intensity as defined by RM
may be affected by an artifact at 27 Myr in the duration of stratigraphic
intervals. Nevertheless, when a procedure free of this artifact is implemented,
the 27 Myr periodicity appears in origination, suggesting that the artifact may
ultimately be based on a signal in the data. A 62 Myr feature appears in
extinction, when this same procedure is used. We conclude that evidence for a
periodicity at 62 Myr is robust, and evidence for periodicity at approximately
27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio
Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease
We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel
Evolution of star formation in the UKIDSS Ultra Deep Survey Field - I. Luminosity functions and cosmic star formation rate out to z = 1.6
We present new results on the cosmic star formation history in the Subaru/XMM–Newton Deep Survey (SXDS)–Ultra Deep Survey (UDS) field out to z = 1.6. We compile narrowband
data from the Subaru Telescope and the Visible and Infrared Survey Telescope for Astronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to make a selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmic time. We determine photometric redshifts for the sample using 11-band photometry, and use
a spectroscopically confirmed subset to fine tune the resultant redshift distribution. We use the maximum-likelihood technique to determine luminosity functions in each redshift slice and model the selection effects inherent in any narrow-band selection statistically, to obviate the retrospective corrections ordinarily required. The deep narrow-band data are sensitive to very low star formation rates (SFRs), and allow an accurate evaluation of the faint end slope of the Schechter function, α. We find that α is particularly sensitive to the assumed faintest
broad-band magnitude of a galaxy capable of hosting an emission line, and propose that this limit should be empirically motivated. For this analysis, we base our threshold on the limiting observed equivalent widths of emission lines in the local Universe. We compute the
characteristic SFR of galaxies in each redshift slice, and the integrated SFR density, ρSFR. We find our results to be in good agreement with the literature and parametrize the evolution of the SFR density as ρSFR ∝ (1 + z)4.58 confirming a steep decline in star formation activity since z ∼ 1.6.
Keywords: surveys – galaxies: evolution – galaxies: formation – galaxies: high-redshift –
galaxies: star formation – cosmology: observations
High-Resolution RT-PCR Analysis of Alternative Barley Transcripts
Assembly of the barley genome and extensive use of RNA-seq has resulted in an abundance of gene expression data and the recognition of wide-scale production of alternatively spliced transcripts. Here, we describe in detail a high-resolution reverse transcription-PCR based panel (HR RT-PCR) that confirms the accuracy of alternatively spliced transcripts from RNA-seq and allows quantification of changes in the proportion of splice isoforms between different experimental conditions, time points, tissues, genotypes, ecotypes, and treatments. By validating a selection of barley genes, use of the panel gives confidence or otherwise to the genome-wide global changes in alternatively spliced transcripts reported by RNA-seq. This simple assay can readily be applied to perform detailed transcript isoform analysis for any gene in any species.</p
Less talk, more action (Re)Organising universities in Aotearoa New Zealand
Despite the growing size of the academic precariat in the tertiary sector, this exploited group of workers lacks a voice in either their universities or their national union. In this article we draw on our experiences of transitioning from a small activist group to a broader research collective with influence and voice, while forging networks of solidarity. Through reflecting on developing the Precarious Academic Work Survey (PAWS), we explore how action research is a viable way of structurally and politically (re)organising academic work. We argue that partnering with changemakers such as unions as co-researchers disrupts their embedded processes so that they may be (re)politicised towards pressing issues such as precarity. Further, we highlight how research can be used as a call to action and a tool to recruit powerful allies to collaborate on transforming universities into educational utopias
Contribution of microscopy for understanding the mechanism of action against trypanosomatids
Transmission electron microscopy (TEM) has proved to be a useful tool to study the ultrastructural alterations and the target organelles of new antitrypanosomatid drugs. Thus, it has been observed that sesquiterpene lactones induce diverse ultrastructural alterations in both T. cruzi and Leishmania spp., such as cytoplasmic vacuolization, appearance of multilamellar structures, condensation of nuclear DNA, and, in some cases, an important accumulation of lipid vacuoles. This accumulation could be related to apoptotic events. Some of the sesquiterpene lactones (e.g., psilostachyin) have also been demonstrated to cause an intense mitochondrial swelling accompanied by a visible kinetoplast deformation as well as the appearance of multivesicular bodies. This mitochondrial swelling could be related to the generation of oxidative stress and associated to alterations in the ergosterol metabolism. The appearance of multilamellar structures and multiple kinetoplasts and flagella induced by the sesquiterpene lactone psilostachyin C indicates that this compound would act at the parasite cell cycle level, in an intermediate stage between kinetoplast segregation and nuclear division. In turn, the diterpene lactone icetexane has proved to induce the external membrane budding on T. cruzi together with an apparent disorganization of the pericellar cytoskeleton. Thus, ultrastructural TEM studies allow elucidating the possible mechanisms and the subsequent identification of molecular targets for the action of natural compounds on trypanosomatids.Fil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Tonn, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
A note on the pricing of multivariate contingent claims under a transformed-gamma distribution
We develop a framework for pricing multivariate European-style contingent claims in a discrete-time economy based on a multivariate transformed-gamma distribution. In our model, each transformed-gamma distributed underlying asset depends on two terms: a idiosyncratic term and a systematic term, where the latter is the same for all underlying assets and has a direct impact on their correlation structure. Given our distributional assumptions and the existence of a representative agent with a standard utility function, we apply equilibrium arguments and provide sufficient conditions for obtaining preference-free contingent claim pricing equations. We illustrate the applicability of our framework by providing examples of preference-free contingent claim pricing models. Multivariate pricing models are of particular interest when payoffs depend on two or more underlying assets, such as crack and crush spread options, options to exchange one asset for another, and options with a stochastic strike price in general
- …
