23 research outputs found
Accurate reconstruction of microbial strains from metagenomic sequencing using representative reference genomes
Exploring the genetic diversity of microbes within the environment through metagenomic sequencing first requires classifying these reads into taxonomic groups. Current methods compare these sequencing data with existing biased and limited reference databases. Several recent evaluation studies demonstrate that current methods either lack sufficient sensitivity for species-level assignments or suffer from false positives, overestimating the number of species in the metagenome. Both are especially problematic for the identification of low-abundance microbial species, e. g. detecting pathogens in ancient metagenomic samples. We present a new method, SPARSE, which improves taxonomic assignments of metagenomic reads. SPARSE balances existing biased reference databases by grouping reference genomes into similarity-based hierarchical clusters, implemented as an efficient incremental data structure. SPARSE assigns reads to these clusters using a probabilistic model, which specifically penalizes non-specific mappings of reads from unknown sources and hence reduces false-positive assignments. Our evaluation on simulated datasets from two recent evaluation studies demonstrated the improved precision of SPARSE in comparison to other methods for species-level classification. In a third simulation, our method successfully differentiated multiple co-existing Escherichia coli strains from the same sample. In real archaeological datasets, SPARSE identified ancient pathogens with ≤0.02% abundance, consistent with published findings that required additional sequencing data. In these datasets, other methods either missed targeted pathogens or reported non-existent ones
Lightweight Metagenomic Classification via eBWT
The development of Next Generation Sequencing has had a major impact on the study of genetic sequences, and in particular, on the advancement of metagenomics, whose aim is to identify the microorganisms that are present in a sample collected directly from the environment. In this paper, we describe a new lightweight alignment-free and assembly-free framework for metagenomic classification that compares each unknown sequence in the sample to a collection of known genomes. We take advantage of the combinatorial properties of an extension of the Burrows-Wheeler transform, and we sequentially scan the required data structures, so that we can analyze unknown sequences of large collections using little internal memory. For the best of our knowledge, this is the first approach that is assembly- and alignment-free, and is not based on k-mers. We show that our experiments confirm the effectiveness of our approach and the high accuracy even in negative control samples. Indeed we only classify 1 short read on 5,726,358 random shuffle reads. Finally, the results are comparable with those achieved by read-mapping classifiers and by k-mer based classifiers
Challenges in benchmarking metagenomic profilers
Accurate microbial identification and abundance estimation are crucial for metagenomics analysis. Various methods for classifying metagenomic data and estimating taxonomic profiles, broadly referred to as metagenomic profilers, have been developed. Yet, benchmarking metagenomic profilers remains challenging because some tools are designed to report relative sequence abundance while others report relative taxonomic abundance. Here, we show how misleading conclusions can be drawn by neglecting this distinction between relative abundance types when benchmarking metagenomic profilers. Moreover, we show compelling evidence that interchanging sequence abundance and taxonomic abundance will influence both per-sample summary statistics and cross-sample comparisons. We suggest that the microbiome research community should pay attention to potentially misleading biological conclusions arising from this issue when benchmarking metagenomic profilers, by carefully considering the type of abundance data that was analyzed and interpreted, and clearly stating the strategy used for metagenomic profiling
Accurate detection of m6A RNA modifications in native RNA sequences
The epitranscriptomics field has undergone an enormous expansion in the last few years; however, a major limitation is the lack of generic methods to map RNA modifications transcriptome-wide. Here, we show that using direct RNA sequencing, N6-methyladenosine (m6A) RNA modifications can be detected with high accuracy, in the form of systematic errors and decreased base-calling qualities. Specifically, we find that our algorithm, trained with m6A-modified and unmodified synthetic sequences, can predict m6A RNA modifications with ~90% accuracy. We then extend our findings to yeast data sets, finding that our method can identify m6A RNA modifications in vivo with an accuracy of 87%. Moreover, we further validate our method by showing that these 'errors' are typically not observed in yeast ime4-knockout strains, which lack m6A modifications. Our results open avenues to investigate the biological roles of RNA modifications in their native RNA context
