338 research outputs found
Simulating Physical Phenomena by Quantum Networks
Physical systems, characterized by an ensemble of interacting elementary
constituents, can be represented and studied by different algebras of
observables or operators. For example, a fully polarized electronic system can
be investigated by means of the algebra generated by the usual fermionic
creation and annihilation operators, or by using the algebra of Pauli
(spin-1/2) operators. The correspondence between the two algebras is given by
the Jordan-Wigner isomorphism. As we previously noted similar one-to-one
mappings enable one to represent any physical system in a quantum computer. In
this paper we evolve and exploit this fundamental concept in quantum
information processing to simulate generic physical phenomena by quantum
networks. We give quantum circuits useful for the efficient evaluation of the
physical properties (e.g, spectrum of observables or relevant correlation
functions) of an arbitrary system with Hamiltonian .Comment: 44 pages, 15 psfigur
High dissimilarity within a multiyear annual record of pollen assemblages from a North American tallgrass prairie
Citation: Commerford, J. L., McLauchlan, K. K., & Minckley, T. A. (2016). High dissimilarity within a multiyear annual record of pollen assemblages from a North American tallgrass prairie. Ecology and Evolution, 6(15), 5273-5289. doi:10.1002/ece3.2259Grassland vegetation varies in composition across North America and has been historically influenced by multiple biotic and abiotic drivers, including fire, herbivory, and topography. Yet, the amount of temporal and spatial variability exhibited among grassland pollen assemblages, and the influence of these biotic and abiotic drivers on pollen assemblage composition and diversity has been relatively understudied. Here, we examine 4 years of modern pollen assemblages collected from a series of 28 traps at the Konza Prairie Long-Term Ecological Research Area in the Flint Hills of Kansas, with the aim of evaluating the influence of these drivers, as well as quantifying the amount of spatial and temporal variability in the pollen signatures of the tallgrass prairie biome. We include all terrestrial pollen taxa in our analyses while calculating four summative metrics of pollen diversity and composition -beta-diversity, Shannon index, nonarboreal pollen percentage, and Ambrosia: Artemisia -and find different roles of fire, herbivory, and topography variables in relation to these pollen metrics. In addition, we find significant annual differences in the means of three of these metrics, particularly the year 2013 which experienced high precipitation relative to the other 3 years of data. To quantify spatial and temporal dissimilarity among the samples over the 4-year study, we calculate pairwise squared-chord distances (SCD). The SCD values indicate higher compositional dissimilarity across the traps (0.38 mean) among all years than within a single trap from year to year (0.31 mean), suggesting that grassland vegetation can have different pollen signatures across finely sampled space and time, and emphasizing the need for additional long-term annual monitoring of grassland pollen
Digital Quantum Simulation with Rydberg Atoms
We discuss in detail the implementation of an open-system quantum simulator
with Rydberg states of neutral atoms held in an optical lattice. Our scheme
allows one to realize both coherent as well as dissipative dynamics of complex
spin models involving many-body interactions and constraints. The central
building block of the simulation scheme is constituted by a mesoscopic Rydberg
gate that permits the entanglement of several atoms in an efficient, robust and
quick protocol. In addition, optical pumping on ancillary atoms provides the
dissipative ingredient for engineering the coupling between the system and a
tailored environment. As an illustration, we discuss how the simulator enables
the simulation of coherent evolution of quantum spin models such as the
two-dimensional Heisenberg model and Kitaev's toric code, which involves
four-body spin interactions. We moreover show that in principle also the
simulation of lattice fermions can be achieved. As an example for controlled
dissipative dynamics, we discuss ground state cooling of frustration-free spin
Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral
Particles" of "Quantum Information Processing
Recommended from our members
A Dendroecological Analysis of Forest Dynamics for Old-Growth Abies-Tsuga-Quercus on the Boso Peninsula, Southeastern Japan
This study investigated the composition, age-and size-structure, and tree-ring relationships for an old-growth, warm-temperate, mixed-evergreen forest at the University of Tokyo Chiba Forest, Japan. A total of 32 tree species were recorded, which was dominated by Abies firma and Quercus acuta. Tsuga sieboldii dominated the recruitment after 1850, followed by Abies firma. After 1920, many individuals of Castanopsis, Cinnamomum, Cleyera and Quercus became established. The temporal pattern of conifer recruitment did not correspond to the record of strong wind events. Basal area increment in Abies firma and Castanopsis sieboldii trees increased throughout their lives, a trend not seen in the ring width index. Mean annual temperature was below the 100-year mean between 1920 and 1940 and 1960-1980, but increased rather abruptly after 1980. Mean annual precipitation decreased after 1960. Tree-ring releases are very common at the study forest, which are indicative of frequent small to moderate-sized disturbances. At least one release was recorded in every decade from 1890 to the present day, which is likely the primary causal factor promoting tree growth and recruitment. Our results suggest that early logging activities coupled with natural disturbances had a great influence on the developmental process and current structure of the study stand and that tree growth is varying in a manner consistent with forest dynamics. © 2017 by The Tree-Ring Society.This item is part of the Tree-Ring Research (formerly Tree-Ring Bulletin) archive. For more information about this peer-reviewed scholarly journal, please email the Editor of Tree-Ring Research at [email protected]
Measurement of the CP-Violating Asymmetry Amplitude sin2
We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
Propriétés des critères des lignes limites de dégagement chez les arbres Nord Américains
Shell occupation by the hermit crab Dardanus insignis (Decapoda, Diogenidae) from the north Coast of São Paulo state, Brazil
Abstract The pattern of shell occupation by the hermit crab Dardanus insignis (Saussure, 1858) from the subtropical region of southeastern coast of Brazil was investigated in the present study. The percentage of shell types that were occupied and the morphometric relationships between hermit crabs and occupied shells were analyzed from monthly collections conducted during two years (from January 1998 to December 1999). Individuals were categorized according to sex and gonadal maturation, weighed and measured with respect to their cephalothoracic shield length (CSL) and wet weight (CWW). Shells were measured regarding their aperture width (SAW), dry weight (SDW) and internal volume (SIV). A total of 1086 hermit crabs was collected, occupying shells of 11 gastropod species. Olivancillaria urceus (Roding, 1798) was most commonly used by the hermit crab D. insignis, followed by Buccinanops cochlidium (Dillwyn, 1817), and Stramonita haemastoma (Linnaeus, 1767). The highest determination coefficients (r2 > 0.50, p < 0.01) were recorded particularly in the morphometric relationships between CSL vs. CWW and SAW vs. SIV, which are important indication that in this D. insignis population the great majority the animals occupied adequate shells during the two years analysed. The high number of used shell species and relative plasticity in pattern of shell utilization by smaller individuals of D. insignis indicated that occupation is influenced by the shell availability, while larger individuals demonstrated more specialized occupation in Tonna galea (Linnaeus, 1758) shell
Interactions between drought and shade on growth and physiological traits in two Populus cathayana
Leaf anatomy of Qualea parviflora (Vochysiaceae) in three phytophysiognomies of the Mato Grosso State, Brazil
- …
