1,939 research outputs found
Munchausen by internet: current research and future directions.
The Internet has revolutionized the health world, enabling self-diagnosis and online support to take place irrespective of time or location. Alongside the positive aspects for an individual's health from making use of the Internet, debate has intensified on how the increasing use of Web technology might have a negative impact on patients, caregivers, and practitioners. One such negative health-related behavior is Munchausen by Internet
MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure
Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe
Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation
Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles
Network Archaeology: Uncovering Ancient Networks from Present-day Interactions
Often questions arise about old or extinct networks. What proteins interacted
in a long-extinct ancestor species of yeast? Who were the central players in
the Last.fm social network 3 years ago? Our ability to answer such questions
has been limited by the unavailability of past versions of networks. To
overcome these limitations, we propose several algorithms for reconstructing a
network's history of growth given only the network as it exists today and a
generative model by which the network is believed to have evolved. Our
likelihood-based method finds a probable previous state of the network by
reversing the forward growth model. This approach retains node identities so
that the history of individual nodes can be tracked. We apply these algorithms
to uncover older, non-extant biological and social networks believed to have
grown via several models, including duplication-mutation with complementarity,
forest fire, and preferential attachment. Through experiments on both synthetic
and real-world data, we find that our algorithms can estimate node arrival
times, identify anchor nodes from which new nodes copy links, and can reveal
significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure
Uncovering the overlapping community structure of complex networks in nature and society
Many complex systems in nature and society can be described in terms of
networks capturing the intricate web of connections among the units they are
made of. A key question is how to interpret the global organization of such
networks as the coexistence of their structural subunits (communities)
associated with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins, industrial
sectors and groups of people) is crucial to the understanding of the structural
and functional properties of networks. The existing deterministic methods used
for large networks find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of nodes. Here we
introduce an approach to analysing the main statistical features of the
interwoven sets of overlapping communities that makes a step towards uncovering
the modular structure of complex systems. After defining a set of new
characteristic quantities for the statistics of communities, we apply an
efficient technique for exploring overlapping communities on a large scale. We
find that overlaps are significant, and the distributions we introduce reveal
universal features of networks. Our studies of collaboration, word-association
and protein interaction graphs show that the web of communities has non-trivial
correlations and specific scaling properties.Comment: The free academic research software, CFinder, used for the
publication is available at the website of the publication:
http://angel.elte.hu/clusterin
A self-organized model for cell-differentiation based on variations of molecular decay rates
Systemic properties of living cells are the result of molecular dynamics
governed by so-called genetic regulatory networks (GRN). These networks capture
all possible features of cells and are responsible for the immense levels of
adaptation characteristic to living systems. At any point in time only small
subsets of these networks are active. Any active subset of the GRN leads to the
expression of particular sets of molecules (expression modes). The subsets of
active networks change over time, leading to the observed complex dynamics of
expression patterns. Understanding of this dynamics becomes increasingly
important in systems biology and medicine. While the importance of
transcription rates and catalytic interactions has been widely recognized in
modeling genetic regulatory systems, the understanding of the role of
degradation of biochemical agents (mRNA, protein) in regulatory dynamics
remains limited. Recent experimental data suggests that there exists a
functional relation between mRNA and protein decay rates and expression modes.
In this paper we propose a model for the dynamics of successions of sequences
of active subnetworks of the GRN. The model is able to reproduce key
characteristics of molecular dynamics, including homeostasis, multi-stability,
periodic dynamics, alternating activity, differentiability, and self-organized
critical dynamics. Moreover the model allows to naturally understand the
mechanism behind the relation between decay rates and expression modes. The
model explains recent experimental observations that decay-rates (or turnovers)
vary between differentiated tissue-classes at a general systemic level and
highlights the role of intracellular decay rate control mechanisms in cell
differentiation.Comment: 16 pages, 5 figure
Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis
PMCID: PMC379391
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
A human MAP kinase interactome.
Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps
Recommended from our members
No straight lines – young women’s perceptions of their mental health and wellbeing during and after pregnancy: a systematic review and meta-ethnography
Background: Young mothers face mental health challenges during and after pregnancy including increased rates of depression compared to older mothers. While the prevention of teenage pregnancy in countries such as the United States and the United Kingdom has been a focus for policy and research in recent decades, the need to understand young women’s own experiences has been highlighted. The aim of this meta-ethnography was to examine young women’s perceptions of their mental health and wellbeing during and after pregnancy to provide new understandings of those experiences.
Methods: A systematic review and meta-ethnographic synthesis of qualitative research was conducted. Seven databases were systematically searched and forward and backward searching conducted. Papers were included if they were from Organisation for Economic Co-operation and Development countries and explored mental health and wellbeing experiences of young mothers (age under 20 in pregnancy; under 25 at time of research) as a primary research question – or where evidence about mental health and wellbeing from participants was foregrounded. Nineteen papers were identified and the Critical Appraisal Skills Programme checklist for qualitative research used to appraise the evidence. Following the seven-step process of meta-ethnography, key constructs were examined within each study and then translated into one another.
Results: Seven translated themes were identified forming a new line of argument wherein mental health and wellbeing was analysed as relating to individual bodily experiences; tied into past and present relationships; underpinned by economic insecurity and entangled with feelings of societal surveillance. There were ‘no straight lines’ in young women’s experiences, which were more complex than dominant narratives around overcoming adversity suggest.
Conclusions: The synthesis concludes that health and social care professionals need to reflect on the operation of power and stigma in young women’s lives and its impact on wellbeing. It adds to understanding of young women’s mental health and wellbeing during and after pregnancy as located in physical and structural factors rather than individual capacities alone
- …
