11 research outputs found

    Precision restoration: a necessary approach to foster forest recovery in the 21st century

    Get PDF
    We thank S. Tabik, E. Guirado, and Garnata Drone SL for fruitful debates about the application of remote sensing and artificial intelligence in restoration. E. McKeown looked over the English version of the manuscript. Original drawings were made by J. D. Guerrero. This work was supported by projects RESISTE (P18-RT-1927) from the Consejeria de Economia, Conocimiento, y Universidad from the Junta de Andalucia, and AVA201601.19 (NUTERA-DE I), DETECTOR (A-RNM-256-UGR18), and AVA2019.004 (NUTERA-DE II), cofinanced (80%) by the FEDER Program. F.M.-R. acknowledges the support of the Agreement 4580 between OTRI-UGR and the city council of La Zubia. We thank an anonymous reviewer for helpful comments that improved the manuscript.Forest restoration is currently a primary objective in environmental management policies at a global scale, to the extent that impressive initiatives and commitments have been launched to plant billions of trees. However, resources are limited and the success of any restoration effort should be maximized. Thus, restoration programs should seek to guarantee that what is planted today will become an adult tree in the future, a simple fact that, however, usually receives little attention. Here, we advocate for the need to focus restoration efforts on an individual plant level to increase establishment success while reducing negative side effects by using an approach that we term “precision forest restoration” (PFR). The objective of PFR will be to ensure that planted seedlings or sowed seeds will become adult trees with the appropriate landscape configuration to create functional and self-regulating forest ecosystems while reducing the negative impacts of traditional massive reforestation actions. PFR can take advantage of ecological knowledge together with technologies and methodologies from the landscape scale to the individual- plant scale, and from the more traditional, low-tech approaches to the latest high-tech ones. PFR may be more expensive at the level of individual plants, but will be more cost-effective in the long term if it allows for the creation of resilient forests able to providemultiple ecosystemservices. PFR was not feasible a few years ago due to the high cost and low precision of the available technologies, but it is currently an alternative that might reformulate a wide spectrum of ecosystem restoration activities.Junta de Andalucia P18-RT-1927European Commission AVA201601.19 A-RNM-256-UGR18 AVA2019.004OTRI-UGR 4580city council of La Zubia 458

    A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study.

    Get PDF
    OBJECTIVE: To generate a global reference for caesarean section (CS) rates at health facilities. DESIGN: Cross-sectional study. SETTING: Health facilities from 43 countries. POPULATION/SAMPLE: Thirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10,045,875 women giving birth from 43 countries for model testing. METHODS: We hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. These models generated probabilities of CS that could be compared with the observed CS rates. We devised a three-step approach to generate the global benchmark of CS rates at health facilities: creation of a multi-country reference population, building mathematical models, and testing these models. MAIN OUTCOME MEASURES: Area under the ROC curves, diagnostic odds ratio, expected CS rate, observed CS rate. RESULTS: According to the different versions of the model, areas under the ROC curves suggested a good discriminatory capacity of C-Model, with summary estimates ranging from 0.832 to 0.844. The C-Model was able to generate expected CS rates adjusted for the case-mix of the obstetric population. We have also prepared an e-calculator to facilitate use of C-Model (www.who.int/reproductivehealth/publications/maternal_perinatal_health/c-model/en/). CONCLUSIONS: This article describes the development of a global reference for CS rates. Based on maternal characteristics, this tool was able to generate an individualised expected CS rate for health facilities or groups of health facilities. With C-Model, obstetric teams, health system managers, health facilities, health insurance companies, and governments can produce a customised reference CS rate for assessing use (and overuse) of CS. TWEETABLE ABSTRACT: The C-Model provides a customized benchmark for caesarean section rates in health facilities and systems

    Magnetic resonance imaging of skull and brain parameters in fetuses with intrauterine growth restriction.

    Get PDF
    Objective: To compare fetuses with intrauterine growth restriction (IUGR) and those with normal growth, in terms of skull and brain measurements obtained by magnetic resonance imaging (MRI). Materials and Methods: This was a prospective cohort study including 26 single fetuses (13 with IUGR and 13 with normal growth), evaluated from 26 to 38 weeks of gestation. Using MRI, we measured skull and brain biparietal diameters (BPDs); skull and brain occipitofrontal diameters (OFDs); corpus callosum length and area; transverse cerebellar diameter; extracerebral cerebrospinal fluid (eCSF); and right and left interopercular distances (IODs). Results: The following were significantly smaller in IUGR fetuses than in control fetuses: skull BPD (76.9 vs. 78.2 mm; p = 0.0029); brain BPD (67.8 vs. 71.6 mm; p = 0.0064); skull OFD (93.6 vs. 95 mm; p = 0.0010); eCSF (5.5 vs. 8.2 mm; p = 0.0003); right IOD (9.8 vs. 13.9 mm; p = 0.0023); and left IOD (11.8 vs. 16.3 mm; p = 0.0183). The skull BPD/eCSF, brain BPD/eCSF, skull OFD/eCSF, and brain OFD/eCSF ratios were also lower in IUGR fetuses. Conclusion: IUGR fetuses had smaller OFD and BPD, both skull and brain, and less eCSF when compared to normal growth fetuses

    Maternal uterine artery Doppler in the first and second trimesters as screening method for hypertensive disorders and adverse perinatal outcomes in low-risk pregnancies.

    Get PDF
    OBJECTIVE: To assess the maternal demographic characteristics and uterine artery (UA) Doppler parameters at first and second trimesters of pregnancy as predictors for hypertensive disorders (HDs) and adverse perinatal outcomes. METHODS: This prospective cohort study comprised 162 singleton low-risk women undergoing routine antenatal care. The left and right UA were assessed by color and pulsed Doppler and the mean pulsatility and resistance indices as well as the presence of a bilateral protodiastolic notch were recorded at 11 to 14 and 20 to 24 weeks' gestation. Multilevel regression analysis was used to determine the effects of maternal characteristics and abnormal UA Doppler parameters on the incidence of HD, small for gestational age newborn, cesarean section rate, Apgar score 95th percentile only at the first trimester showed an increased risk for HD (odds ratio, 23.25; 95% confidence interval, 3.47 to 155.73; P95th percentile (odds ratio, 9.84; 95% confidence interval, 1.05 to 92.10; P=0.05). The model including maternal age, maternal and paternal ethnicity, occupation, parity and UA mean RI increased the relative risk for HD (area under receiver operating characteristics, 0.81). CONCLUSION: A first-trimester screening combining maternal characteristics and UA Doppler parameters is useful to predict HD in a low-risk population

    Magnetic resonance imaging of skull and brain parameters in fetuses with intrauterine growth restriction

    No full text
    Objective: To compare fetuses with intrauterine growth restriction (IUGR) and those with normal growth, in terms of skull and brain measurements obtained by magnetic resonance imaging (MRI). Materials and Methods: This was a prospective cohort study including 26 single fetuses (13 with IUGR and 13 with normal growth), evaluated from 26 to 38 weeks of gestation. Using MRI, we measured skull and brain biparietal diameters (BPDs); skull and brain occipitofrontal diameters (OFDs); corpus callosum length and area; transverse cerebellar diameter; extracerebral cerebrospinal fluid (eCSF); and right and left interopercular distances (IODs). Results: The following were significantly smaller in IUGR fetuses than in control fetuses: Skull BPD (76.9 vs. 78.2 mm; p = 0.0029); brain BPD (67.8 vs. 71.6 mm; p = 0.0064); skull OFD (93.6 vs. 95 mm; p = 0.0010); eCSF (5.5 vs. 8.2 mm; p = 0.0003); right IOD (9.8 vs. 13.9 mm; p = 0.0023); and left IOD (11.8 vs. 16.3 mm; p = 0.0183). The skull BPD/eCSF, brain BPD/eCSF, skull OFD/eCSF, and brain OFD/eCSF ratios were also lower in IUGR fetuses. Conclusion: IUGR fetuses had smaller OFD and BPD, both skull and brain, and less eCSF when compared to normal growth fetuses.Full Tex
    corecore