7,683 research outputs found
Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC
In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material
Binary pattern tile set synthesis is NP-hard
In the field of algorithmic self-assembly, a long-standing unproven
conjecture has been that of the NP-hardness of binary pattern tile set
synthesis (2-PATS). The -PATS problem is that of designing a tile assembly
system with the smallest number of tile types which will self-assemble an input
pattern of colors. Of both theoretical and practical significance, -PATS
has been studied in a series of papers which have shown -PATS to be NP-hard
for , , and then . In this paper, we close the
fundamental conjecture that 2-PATS is NP-hard, concluding this line of study.
While most of our proof relies on standard mathematical proof techniques, one
crucial lemma makes use of a computer-assisted proof, which is a relatively
novel but increasingly utilized paradigm for deriving proofs for complex
mathematical problems. This tool is especially powerful for attacking
combinatorial problems, as exemplified by the proof of the four color theorem
by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and
Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by
Konev and Lisitsa using computer programs. We utilize a massively parallel
algorithm and thus turn an otherwise intractable portion of our proof into a
program which requires approximately a year of computation time, bringing the
use of computer-assisted proofs to a new scale. We fully detail the algorithm
employed by our code, and make the code freely available online
Mid-infrared plasmons in scaled graphene nanostructures
Plasmonics takes advantage of the collective response of electrons to
electromagnetic waves, enabling dramatic scaling of optical devices beyond the
diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns)
plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100
times smaller than the on-resonance light wavelength in free space. We reveal,
for the first time, the crucial damping channels of graphene plasmons via its
intrinsic optical phonons and scattering from the edges. A plasmon lifetime of
20 femto-seconds and smaller is observed, when damping through the emission of
an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2
substrate underneath the graphene nanostructures lead to a significantly
modified plasmon dispersion and damping, in contrast to a non-polar
diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the
plasmon resonance frequencies are close to the polar phonon frequencies. Our
study paves the way for applications of graphene in plasmonic waveguides,
modulators and detectors in an unprecedentedly broad wavelength range from
sub-terahertz to mid-infrared.Comment: submitte
Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands
"© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)
Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response
Dramatic rise of mutators has been found to accompany adaptation of bacteria
in response to many kinds of stress. Two views on the evolutionary origin of
this phenomenon emerged: the pleiotropic hypothesis positing that it is a
byproduct of environmental stress or other specific stress response mechanisms
and the second order selection which states that mutators hitchhike to fixation
with unrelated beneficial alleles. Conventional population genetics models
could not fully resolve this controversy because they are based on certain
assumptions about fitness landscape. Here we address this problem using a
microscopic multiscale model, which couples physically realistic molecular
descriptions of proteins and their interactions with population genetics of
carrier organisms without assuming any a priori fitness landscape. We found
that both pleiotropy and second order selection play a crucial role at
different stages of adaptation: the supply of mutators is provided through
destabilization of error correction complexes or fluctuations of production
levels of prototypic mismatch repair proteins (pleiotropic effects), while rise
and fixation of mutators occur when there is a sufficient supply of beneficial
mutations in replication-controlling genes. This general mechanism assures a
robust and reliable adaptation of organisms to unforeseen challenges. This
study highlights physical principles underlying physical biological mechanisms
of stress response and adaptation
Recommended from our members
Tunnelling anisotropic magnetoresistance at La<inf>0.67</inf>Sr<inf>0.33</inf>MnO<inf>3</inf>-graphene interfaces
Using ferromagnetic La0.67Sr0.33MnO3 electrodes bridged by single-layer graphene, we observe magnetoresistive changes of ∼32–35 MΩ at 5 K. Magneto-optical Kerr effect microscopy at the same temperature reveals that the magnetoresistance arises from in-plane reorientations of electrode magnetization, evidencing tunnelling anisotropic magnetoresistance at the La0.67Sr0.33MnO3-graphene interfaces. Large resistance switching without spin transport through the non-magnetic channel could be attractive for graphene-based magnetic-sensing applications.This work was funded by grant F/09 154/E from the Leverhulme Trust, ERC Grant Hetero2D, EU Graphene Flagship (no. 604391), a Schlumberger Cambridge International Scholarship, a UK EPSRC DTA award, the Royal Society, and EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/1 and EP/L016087/1.This is the author accepted manuscript. The final version is available at http://scitation.aip.org/content/aip/journal/apl/108/11/10.1063/1.4942778
Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
N-type graphene induced by dissociative H-2 adsorption at room temperature
Studies of the interaction between hydrogen and graphene have been increasingly required due to the indispensable modulation of the electronic structure of graphene for device applications and the possibility of using graphene as a hydrogen storage material. Here, we report on the behaviour of molecular hydrogen on graphene using the gate voltage-dependent resistance of single-, bi-, and multi-layer graphene sheets as a function of H-2 gas pressure up to 24 bar from 300 K to 345 K. Upon H-2 exposure, the charge neutrality point shifts toward the negative gate voltage region, indicating n-type doping, and distinct Raman signature changes, increases in the interlayer distance of multi-layer graphene, and a decrease in the d-spacing occur, as determined by TEM. These results demonstrate the occurrence of dissociative H-2 adsorption due to the existence of vacancy defects on graphene.open12
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle
Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a
pair of isolated flat electronic bands and forms a strongly correlated
electronic platform. Here, we use scanning tunneling microscopy to probe local
properties of highly tunable twisted bilayer graphene devices and show that the
flat bands strongly deform when aligned with the Fermi level. At half filling
of the bands, we observe the development of gaps originating from correlated
insulating states. Near charge neutrality, we find a previously unidentified
correlated regime featuring a substantially enhanced flat band splitting that
we describe within a microscopic model predicting a strong tendency towards
nematic ordering. Our results provide insights into symmetry breaking
correlation effects and highlight the importance of electronic interactions for
all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page
- …
