43 research outputs found
Clinical course of untreated tonic-clonic seizures in childhood: prospective, hospital based study
Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia
BACKGROUND: Sera from children with post-varicella infections have autoantibodies that react with centrosomes in brain and tissue culture cells. We investigated the sera of children with infections and post-varicella ataxia and related conditions for reactivity to five recombinant centrosome proteins: γγ-enolase, pericentrin, ninein, PCM-1, and Mob1. METHODS: Sera from 12 patients with acute post-varicella ataxia, 1 with post-Epstein Barr virus (EBV) ataxia, 5 with uncomplicated varicella infections, and other conditions were tested for reactivity to cryopreserved cerebellum tissue and recombinant centrosome proteins. The distribution of pericentrin in the cerebellum was studied by indirect immunofluorescence (IIF) using rabbit antibodies to the recombinant protein. Antibodies to phospholipids (APL) were detected by ELISA. RESULTS: Eleven of 12 children with post-varicella ataxia, 4/5 children with uncomplicated varicella infections, 1/1 with post-EBV ataxia, 2/2 with ADEM, 1/2 with neuroblastoma and ataxia, and 2/2 with cerebellitis had antibodies directed against 1 or more recombinant centrosome antigens. Antibodies to pericentrin were seen in 5/12 children with post-varicella ataxia but not in any of the other sera tested. IIF demonstrated that pericentrin is located in axons and centrosomes of cerebellar cells. APL were detected in 75% of the sera from children with post-varicella ataxia and 50% of children with varicella without ataxia and in none of the controls. CONCLUSION: This is the first study to show the antigen specificity of anti-centrosome antibodies in children with varicella. Our data suggest that children with post-varicella ataxia have unique autoantibody reactivity to pericentrin
Stopping Antiepileptic Drugs: When and Why?
After a patient has initiated an antiepileptic drug (AED) and achieved a sustained period of seizure freedom, the bias towards continuing therapy indefinitely can be substantial. Studies show that the rate of seizure recurrence after AED withdrawal is about two to three times the rate in patients who continue AEDs, but there are many benefits to AED withdrawal that should be evaluated on an individualized basis. AED discontinuation may be considered in patients whose seizures have been completely controlled for a prolonged period, typically 1 to 2 years for children and 2 to 5 years for adults. For children, symptomatic epilepsy, adolescent onset, and a longer time to achieve seizure control are associated with a worse prognosis. In adults, factors such as a longer duration of epilepsy, an abnormal neurologic examination, an abnormal EEG, and certain epilepsy syndromes are known to increase the risk of recurrence. Even in patients with a favorable prognosis, however, the risk of relapse can be as high as 20% to 25%. Before withdrawing AEDs, patients should be counseled about their individual risk for relapse and the potential implications of a recurrent seizure, particularly for safety and driving
