1,292 research outputs found
Modification Factor for Shear Capacity of Lightweight Concrete Beams
yesThe validity of the modification factor specified in the ACI 318-11 shear provision for concrete members to account for the reduced frictional properties along crack interfaces is examined using a comprehensive database comprised of 1716 normalweight concrete (NWC) beam specimens, 73 all-lightweight concrete (ALWC) beam specimens, and 54 sand-lightweight concrete (SLWC) beam specimens without shear reinforcement. Comparisons of measured and predicted shear capacities of concrete beams in the database show that ACI 318-11 provisions for shear-transfer capacity of concrete are less conservative for lightweight concrete (LWC) beams than NWC beams. A rational approach based on the upper-bound theorem of concrete plasticity has been developed to assess the reduced aggregate interlock along the crack interfaces and predict the shear-transfer capacity of concrete. A simplified model for the modification factor is then proposed as a function of the compressive strength and dry density of concrete and maximum aggregate size on the basis of analytical parametric studies on the ratios of shear-transfer capacity of LWC to that of the companion NWC. The proposed modification factor decreases with the decrease in the dry density of concrete, gives closer predictions to experimental results than does the ACI 318-11 shear provision and, overall, improves the safety of shear capacity of LWC beams
Assessment of the effectiveness of the embedded through-section technique for the shear strengthening of RC beams
Embedded Through-Section (ETS) technique is a relatively recent shear strengthening strategy for reinforced
concrete (RC) beams, and consists on opening holes across the depth of the beam’s cross section, with the desired
inclinations, where bars are introduced and are bonded to the concrete substrate with adhesive materials. To assess
the effectiveness of this technique, a comprehensive experimental program composed of 14 RC beams was carried
out, and the obtained results confirm the feasibility of the ETS method and revealed that: (i) inclined ETS
strengthening bars were more effective than vertical ETS bars, and the shear capacity of the beams has increased
with the decrease of the spacing between bars; (ii) brittle shear failure was converted in ductile flexural failure, and
(iii) the contribution of the ETS strengthening bars for the beam shear resistance was limited by the concrete
crushing or due to the yielding of the longitudinal reinforcement. The applicability of the ACI 318 (2008) and
Eurocode 2 (2004) standard specifications for shear resistance was examined and a good agreement between
the experimental and analytical results was obtained.The study reported in this article is part of the research project 'DURCOST', PTDC/ECM/105700/2008, supported by FCT. The authors wish to acknowledge the support provided by the 'Casais', Secil (Unibetao, Braga) and Sika Portugal Companies. The first author acknowledges the National Council for Scientific and Technological Development (CNPq), Brazil, for financial support for scholarship (GDE 200953/2007-9)
Shake-table tests of a reinforced concrete frame designed following modern codes: seismic performance and damage evaluation
This paper presents shake-table tests conducted on a two-fifths-scale reinforced concrete frame representing a conventional construction design under current building code provisions in the Mediterranean area. The structure was subjected to a sequence of dynamic tests including free vibrations and four seismic simulations in which a historical ground motion record was scaled to levels of increasing intensity until collapse. Each seismic simulation was associated with a different level of seismic hazard, representing very frequent, frequent, rare and very rare earthquakes. The structure remained basically undamaged and within the inter-story drift limits of the "immediate occupancy" performance level for the very frequent and frequent earthquakes. For the rare earthquake, the specimen sustained significant damage with chord rotations of up to 28% of its ultimate capacity and approached the upper bound limit of inter-story drift associated with "life safety". The specimen collapsed at the beginning of the "very rare" seismic simulation. Besides summarizing the experimental program, this paper evaluates the damage quantitatively at the global and local levels in terms of chord rotation and other damage indexes, together with the energy dissipation demands for each level of seismic hazard. Further, the ratios of column-to-beam moment capacity recommended by Eurocode 8 and ACI-318 to guarantee the formation of a strong column-weak beam mechanism are examined
Flexural performance of reinforced concrete beams strengthened with prestressed near-surface-mounted FRP reinforcements
YesA numerical method for estimating the curvature, deflection and moment capacity of reinforced concrete beams strengthened with prestressed near-surface-mounted (NSM) FRP bars/strips is presented. A sectional analysis is carried out to predict the moment–curvature relationship from which beam deflections and moment capacity are then calculated. Based on the amount of FRP bars, different failure modes were identified, namely tensile rupture of prestressed FRP bars and concrete crushing before or after yielding of steel reinforcement. Comparisons between experimental results available in the literature and predicted curvature, moment capacity and deflection of reinforced concrete beams with prestressed NSM FRP reinforcements show good agreement. A parametric study concluded that higher prestressing levels improved the cracking and yielding loads, but decreased the beam ductility compared with beams strengthened with nonprestressed NSM FRP bars/strips
Recommended from our members
A combined local damage index for seismic assessment of existing RC structures
A new local damage index for existing reinforced concrete (RC) structures is introduced, wherein deterioration caused by all deformation mechanisms (flexure, shear, anchorage slip) is treated separately for each mechanism. Moreover, the additive character of damage arising from the three response mechanisms, as well as the increase in degradation rate caused by their interaction, are fully taken into consideration. The proposed local damage index is then applied, in conjunction with a finite element model developed previously by the authors, to assess seismic damage response of several RC column and frame test specimens with substandard detailing. It is concluded that in all cases and independently from the prevailing mode of failure, the new local damage index describes well the damage pattern of the analysed specimens
Experimental behaviour of RC beams shear strengthened with NSM CFRP laminates
The near-surface mounted (NSM) is one of the most recent techniques applied for the increase of the shear resistance of
reinforced concrete (RC) beams. This technique involves the installation of carbon fibre reinforcement polymers (CFRP) laminates into thin
slits open on the concrete cover of the elements to strengthen. The effectiveness of this technique for the shear strengthening of T crosssection
RC beams was assessed by experimental research. For this purpose, three inclinations of laminates were tested (45º, 60º and 90º) and,
for each inclination, three percentages of CFRP were applied in RC beams with a percentage of steel stirrups of 0.10% (qsw). The highest
percentage of laminates was designed to provide a maximum load similar to the reference RC beam, which was reinforced with a reinforcement
ratio of steel stirrups of 0.28% (qsw = 0.28%). For each percentage of laminates, a homologous RC beam strengthened with
unidirectional U-shaped CFRP wet lay-up sheets (discrete strips) applied according to the externally bonded reinforcement technique was
also tested, with the purpose of comparing the effectiveness of these two CFRP-strengthening techniques. To evaluate the influence of the
percentage of steel stirrups in the effectiveness of the NSM technique, some of the abovementioned CFRP configurations were also applied in
beams with qsw = 0.17%The authors wish to acknowledge the support provided by the 'Empreiteiros Casais', Degussa, S&P (R) and Secil (Unibetao, Braga). The study reported in this paper forms a part of the research program supported by FCT, PTDC/ECM/73099/2006
Shear Capacity of Monolithic Concrete Joints without Transverse Reinforcement.
yesA mechanism analysis based on the upper-bound theorem of concrete plasticity for monolithic concrete joints without transverse reinforcement is presented. Concrete is modelled as a rigid–perfectly plastic material obeying modified Coulomb failure criteria. Existing stress–strain relationships of concrete in compression and tension are comprehensively modified using the crack band theory to allow for concrete type and maximum aggregate size. Simple equations for the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction are then mathematically developed using the modified stress–strain relationships of concrete. In addition, 12 push-off specimens made of all-lightweight, sand–lightweight and normal-weight concrete having maximum aggregate size between 4 and 19 mm were physically tested. Test results and mechanism analysis clearly showed that the shear capacity of monolithic concrete joints increased with the increase of the maximum aggregate size and dry density of concrete. The mean and standard deviation of the ratio between experimentally measured and predicted (by the mechanism analysis shear capacities) are 1·01 and 0·16 respectively, showing a closer prediction and less variation than Vecchio and Collins' equation, regardless of concrete type and maximum aggregate size
Shear strengthening of continuous reinforced concrete T-beams using wire rope units
A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is presented. Ten two-span reinforced concrete T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested to failure, to explore the significance and shortcomings of the developed unbonded-type shear strengthening technique. The main parameters investigated were the type, amount and prestressing force of wire rope units. All beams tested failed, owing to significant diagonal cracks within the interior shear span. However, beams strengthened with closed type wire rope units exhibited more ductile failure than the unstrengthened, control beam or those strengthened with U-type wire rope units. The diagonal cracking load and ultimate shear capacity of beams with closed-type were linearly increased with the increase of vertical confinement stresses in concrete owing to the prestressing force in wire rope units, while those of beams with U-type were minimally influenced. It was also observed that average stresses in closed-type wire ropes crossing diagonal cracks at ultimate strength of beams tested were much higher than those in U-type wire ropes, showing better utilization in the former case. The shear capacity of beams with closed-type wire rope units is conservatively predicted using the equations of ACI 318-05, modified to account for the external wire rope units. A mechanism analysis based on the upper bound approach of the plasticity theory is also developed to assess the load capacity of beams tested. The predictions by the mechanism analysis for beams with closed-type wire rope units are in good agreement with test results and showed a coefficient of variation slightly less than the modified ACI 318-05 equations. However, the modified ACI 318-05 equations are more conservative and simpler to use for design purposes
Flexural strengthening of RC continuous slab strips using NSM CFRP laminates
To assess the effectiveness of the near surface mounted (NSM) technique, in terms of load carrying and moment
redistribution capacities, for the flexural strengthening of continuous reinforced concrete (RC) slabs, an
experimental program was carried out. The experimental program is composed of three series of three slab strips of
two equal span length, in order to verify the possibility of increasing the negative (at the intermediate support
region) resisting bending moment in 25% and 50% and maintaining moment redistribution levels of 15%, 30% and
45%. Though the flexural resistance of the NSM strengthened sections has exceeded the target values, the moment
redistribution was relatively low, and the increase of the load carrying capacity of the strengthened slabs did not
exceed 25%. This experimental program is analyzed to highlight the possibilities of NSM technique for statically
indeterminate RC slabs in terms of flexural strengthening effectiveness, moment redistribution and ductility
performance. Using a FEM-based computer program, which predictive performance was appraised using the
obtained experimental results, a high effective NSM flexural strengthening strategy is proposed, capable of
enhancing the slab’s load carrying capacity and maintaining high levels of ductility.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The first Author acknowledges the financial support of National Council for Scientific and Technological Development (CNPq) - Brazil, Ph.D. Grant no. 200953/2007-9. The second Author wishes to acknowledge the support provided by FCT, by means of the SFRH/BSAB/818/2008 and SFRH/BSAB/913/2009 sabbatical grants
CFRP flexural and shear strengthening technique for RC beams : experimental and numerical research
Near surface mounted (NSM) technique has proved to be a very effective
technique for the flexural strengthening of RC beams. Due to the relatively small
thickness of the concrete cover that several beams present, cutting the bottom arm of
steel stirrups for the installation of NSM laminates might be a possible strategy, whose
implications on the beam’s load carrying capacity need to be assessed. When steel
stirrups are cut, however, the shear resistance can be a concern. This also happens
when a strengthening intervention is carried out to increase the flexural resistance of a
beam, since in certain cases it is also necessary to increase the shear resistance in order
to avoid the occurrence of brittle shear failure. The present work assesses the
effectiveness of a technique that aims to increase both the flexural and shear resistance
of RC beams that have the bottom arm of the steel stirrups cut for the application of
NSM laminates. This assessment is performed by experimental and numerical
research. The main results of the experimental program are presented and analyzed,
and the innovative aspects of a constitutive model implemented in a computer program
are described, being their virtues and deficiencies discussed.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The second Author acknowledges the grant under the aforementioned research project. The third author acknowledges the financial support of FCT, PhD Grant number SFRH/BD/23326/2005
- …
