28 research outputs found
Recommended from our members
Effects of Understory Vegetation Management on Plant Communities in Oil Palm Plantations in Sumatra, Indonesia
Oil palm plantations have expanded rapidly in recent decades, and are causing substantial impacts on tropical habitats and biodiversity. However, owing to its long lifespan (25-30 years), oil palm forms a much more varied and structurally-complex habitat than many other crops. This can include abundant understory vegetation and also epiphytes on palm trunks. However, the diversity of this plantation vegetation has been poorly studied, and there has been little consideration of the impacts of common plantation vegetation management practices on plant communities.
We conducted a long-term vegetation management experiment that forms part of the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme in Riau, Indonesia. We manipulated herbicide and manual cutting regimes within mature oil palm plantations to create three different understory complexity treatments (Reduced, Normal, and Enhanced vegetation) across replicated sets of plots. Plant communities were surveyed before and after experimental understory vegetation treatments began in three different microhabitats: within the middle of the plantation block (core), on the road edge (edge) and on oil palm trunks (trunk). Part of the sampling was also conducted during a drought event.
We recorded 120 plant species, which comprised a mixture of native, non-native, ‘beneficial’, and ‘problem’ species. We found substantial variation in plant communities between edge, core, and trunk microhabitats, indicating high levels of heterogeneity within the plantation. There were significant effects of varying understory treatment within both core and edge microhabitats, but no spillover of impacts into the trunk microhabitat. We also observed substantial impacts of drought on plant communities, with declines in either biomass, percentage cover, or richness seen across core, edge, and trunk microhabitats during low-rainfall periods. Our findings highlight the diversity of plant communities that can be supported within oil palm plantations, and the substantial impacts that management decisions, and also drought, can have on them. Given the role that diverse plant communities can have in supporting species in other groups, this is likely to have a significant impact on the wider plantation biodiversity. We suggest that plantation management strategies give greater consideration to within-plantation understory plant communities and choose more wildlife-friendly options where possible.This work was funded by The Isaac Newton Trust Cambridge, Golden Agri Resources, and the Natural Environment Research Council [grant number NE/P00458X/1]
Panic results in unique molecular and network changes in the amygdala that facilitate fear responses
Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal grey, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2 positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients
Recommended from our members
A whole-ecosystem method for experimentally suppressing ants on a small scale
Funder: Sinar Mas Agro Resources Technology Research Institute (SMARTRI)Funder: The Isaac Newton Trust Cambridge; Id: http://dx.doi.org/10.13039/501100004815Ant suppression experiments have emerged as a powerful method for assessing the role of ants in ecosystems. However, traditional methods have been limited to canopy ants, and not assessed the role of ants on and below ground. Recent advances have enabled whole-ecosystem ant suppression in large plots, but large-scale experiments are not always feasible. Here, we develop a small-scale, whole-ecosystem suppression method. We compare techniques for monitoring suppression experiments, and assess whether habitat complexity in oil palm influences our method’s effectiveness.
We conducted ant suppression experiments in oil palm agroforestry in Sumatra, Indonesia. We used targeted poison baits, a physical barrier, and canopy isolation to suppress ants in 4m-radius arenas around single palms. We sequentially tested three suppression methods that increased in intensity over 18 months. We sampled ant abundance before and after suppression by fogging, using pitfall traps, and extracting soil monoliths. We also monitored ants throughout the experiment by baiting. We tested the soil for residual poison and monitored other invertebrates (Araneae, Coleoptera, Orthoptera, and Chilopoda) to test for cross-contamination. Plots were established under four oil palm management treatments that varied in their habitat complexity: reduced, intermediate, and high understory complexity treatments in mature plantation, and a recently-replanted plantation.
Post-treatment ant abundance was 92% lower in suppression than control plots. Only the most intensive suppression method, which ran for the final nine months, worked. Baiting rarely reflected the other monitoring methods. The treatment negatively affected Orthoptera, but not other taxa. We detected no residual poison in the soil. Coleoptera abundance increased in suppression plots post-treatment, potentially due to reduced competition with ants. Our findings were consistent across management treatments.Whitten Studentship, Department of Zoolog
Recommended from our members
Understory Vegetation in Oil Palm Plantations Promotes Leopard Cat Activity, but Does Not Affect Rats or Rat Damage
The expansion of oil palm (Elaeis guineensis) plantations is a primary cause of land-use change and biodiversity loss in Southeast Asia. This has led to an increasing demand for the development of more sustainable agricultural management practices in plantations, such as Integrated Pest Management. Although populations of carnivorous mammals show declines when forest is converted to oil palm, some species, such as Leopard Cats (Prionailurus bengalensis) have been found to persist. They are often encouraged by plantation managers for their conservation value, and as agents of pest control to manage rat populations. Despite this, little is known about whether they reduce pest rat numbers, or whether plantation management affects how they use the oil palm habitat. This study was based at the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme in mature oil palm plantations in Riau, Sumatra, where there are three management strategies altering understory vegetation structure. We quantified Leopard Cat activity, invasive rat abundance and rat damage using camera traps, live traps, and visual estimates, respectively. We collected data over a 4-year period, before and after the management strategies were applied. We recorded three species of wild mammals (Leopard Cats, Common Palm Civets, and Wild Pig) within the plantations, of which Leopard Cats made up 82% of the total number of observations. We found that Leopard Cat habitat use was higher with increased understory vegetation, but that there was no effect of the vegetation treatments on rat abundance or rat damage. There was also a trend for reduced rat abundance with increased Leopard Cat activity. These results show that management practices can significantly affect Leopard Cat habitat use, with potential benefits for pest control. They also highlight the value of large-scale long-term manipulative experiments for developing more sustainable management practices in oil palm.This work was funded by The Isaac Newton Trust Cambridge, Sinar Mas Agro Resources Technology Research Institute (SMARTRI), and the Natural Environment Research Council [grant number NE/P00458X/1]. AH was funded by the Claire Barnes Studentship from the Department of Zoology, University of Cambridge. Fieldwork was funded by SMARTRI
Recommended from our members
Resilience of ecological functions to drought in an oil palm agroecosystem
Abstract
Oil palm is a major habitat in the tropics. It is highly productive and contributes substantially to the economies of producing countries, but its expansion has caused widespread deforestation, with negative consequences for biodiversity. Such biodiversity losses may have substantial impacts on ecosystem functions within oil palm and resilience of functions to changing rainfall patterns, with impacts on yield. However, although the direct effects of water deficit on yield have been studied, little work has investigated ecosystem processes within plantations or the resilience of functions to changing rainfall. We conducted ecosystem function experiments within mature oil palm at the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme site in Sumatra, Indonesia. We measured rates of leaf litter decomposition, seed removal, mealworm predation, and herbivory at multiple time points spanning the 2015–2016 El Niño - Southern Oscillation (ENSO) event that caused widespread drought within Southeast Asia. We found that mealworm predation, seed removal, and decomposition rates were high, whilst herbivory levels were low, indicating a healthy ecosystem with high levels of pest control and organic matter breakdown. Exclusion tests showed that the presence of invertebrates was associated with higher levels of seed removal and decomposition and the presence of vertebrates with higher predation. All functions were relatively robust to changes in rainfall. Yet, whilst seed removal and herbivory did not alter with rainfall, decomposition and predation showed more complex effects, with levels of both processes increasing with current rainfall levels when rainfall in preceding time periods was low. This suggests that both processes are resilient to change and able to recover following drought. Our results indicate that the ecosystem processes measured within oil palm plantations are healthy and resilient to changing rainfall patterns. This is hopeful and suggests that the crop may be fairly robust to future changes in precipitation.Isaac Newton Trust Cambridge
Sinar Mas Agro Resources and Technology Research Institut
Recommended from our members
Managing Oil Palm Plantations More Sustainably: Large-Scale Experiments Within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme
Conversion of tropical forest to agriculture results in reduced habitat heterogeneity, and associated declines in biodiversity and ecosystem functions. Management strategies to increase biodiversity in agricultural landscapes have therefore often focused on increasing habitat complexity; however, the large-scale, long-term ecological experiments that are needed to test the effects of these strategies are rare in tropical systems. Oil palm (Elaeis guineensis Jacq.)—one of the most widespread and important tropical crops—offers substantial potential for developing wildlife-friendly management strategies because of its long rotation cycles and tree-like structure. Although there is awareness of the need to increase sustainability, practical options for how best to manage oil palm plantations, for benefits to both the environment and crop productivity, have received little research attention.
In this paper we introduce the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme: a long-term research collaboration between academia and industry in Sumatra, Indonesia. The BEFTA Programme aims to better understand the oil palm agroecosystem and test sustainability strategies. We hypothesise that adjustments to oil palm management could increase structural complexity, stabilize microclimate, and reduce reliance on chemical inputs, thereby helping to improve levels of biodiversity and ecosystem functions. The Programme has established four major components: (1) assessing variability within the plantation under business-as-usual conditions; (2) the BEFTA Understory Vegetation Project, which tests the effects of varying herbicide regimes; (3) the Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project, which tests strategies for restoring riparian habitat; and (4) support for additional collaborative projects within the Programme landscape. Across all projects, we are measuring environmental conditions, biodiversity, and ecosystem functions. We also measure oil palm yield and production costs, in order to assess whether suggested sustainability strategies are feasible from an agronomic perspective.
Early results show that oil palm plantation habitat is more variable than might be expected from a monoculture crop, and that everyday vegetation management decisions have significant impacts on habitat structure. The BEFTA Programme highlights the value of large-scale collaborative projects for understanding tropical agricultural systems, and offers a highly valuable experimental set-up for improving our understanding of practices to manage oil palm more sustainably.This work was funded by The Isaac Newton Trust Cambridge, Golden Agri Resources, ICOPE (the International Conference on Oil Palm and the Environment), and the Natural Environment Research Council [grant number NE/P00458X/1]
Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms
Neotropical coastal lagoons: an appraisal of their biodiversity, functioning, threats and conservation management
Pooled analysis of who surgical safety checklist use and mortality after emergency laparotomy
Background: The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods: In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results: Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89⋅6 per cent) compared with that in countries with a middle (753 of 1242, 60⋅6 per cent; odds ratio (OR) 0⋅17, 95 per cent c.i. 0⋅14 to 0⋅21, P < 0⋅001) or low (363 of 860, 42⋅2 percent; OR 0⋅08, 0⋅07 to 0⋅10, P < 0⋅001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference −9⋅4 (95 per cent c.i. −11⋅9 to −6⋅9) per cent; P < 0⋅001), but the relationship was reversed in low-HDI countries (+12⋅1 (+7⋅0 to +17⋅3) per cent; P < 0⋅001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0⋅60, 0⋅50 to 0⋅73; P < 0⋅001). The greatest absolute benefit was seen for emergency surgery in low-and middle-HDI countries. Conclusion: Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p<0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p<0·001). Interpretation Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication. Funding DFID-MRC-Wellcome Trust Joint Global Health Trial Development Grant, National Institute of Health Research Global Health Research Unit Grant
