701 research outputs found
Nonlinear atom interferometer surpasses classical precision limit
Interference is fundamental to wave dynamics and quantum mechanics. The
quantum wave properties of particles are exploited in metrology using atom
interferometers, allowing for high-precision inertia measurements [1, 2].
Furthermore, the state-of-the-art time standard is based on an interferometric
technique known as Ramsey spectroscopy. However, the precision of an
interferometer is limited by classical statistics owing to the finite number of
atoms used to deduce the quantity of interest [3]. Here we show experimentally
that the classical precision limit can be surpassed using nonlinear atom
interferometry with a Bose-Einstein condensate. Controlled interactions between
the atoms lead to non-classical entangled states within the interferometer;
this represents an alternative approach to the use of non-classical input
states [4-8]. Extending quantum interferometry [9] to the regime of large atom
number, we find that phase sensitivity is enhanced by 15 per cent relative to
that in an ideal classical measurement. Our nonlinear atomic beam splitter
follows the "one-axis-twisting" scheme [10] and implements interaction control
using a narrow Feshbach resonance. We perform noise tomography of the quantum
state within the interferometer and detect coherent spin squeezing with a
squeezing factor of -8.2dB [11-15]. The results provide information on the
many-particle quantum state, and imply the entanglement of 170 atoms [16]
The Cosmic Microwave Background and Particle Physics
In forthcoming years, connections between cosmology and particle physics will
be made increasingly important with the advent of a new generation of cosmic
microwave background (CMB) experiments. Here, we review a number of these
links. Our primary focus is on new CMB tests of inflation. We explain how the
inflationary predictions for the geometry of the Universe and primordial
density perturbations will be tested by CMB temperature fluctuations, and how
the gravitational waves predicted by inflation can be pursued with the CMB
polarization. The CMB signatures of topological defects and primordial magnetic
fields from cosmological phase transitions are also discussed. Furthermore, we
review current and future CMB constraints on various types of dark matter (e.g.
massive neutrinos, weakly interacting massive particles, axions, vacuum
energy), decaying particles, the baryon asymmetry of the Universe,
ultra-high-energy cosmic rays, exotic cosmological topologies, and other new
physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc
Hybrid Mechanical Systems
We discuss hybrid systems in which a mechanical oscillator is coupled to
another (microscopic) quantum system, such as trapped atoms or ions,
solid-state spin qubits, or superconducting devices. We summarize and compare
different coupling schemes and describe first experimental implementations.
Hybrid mechanical systems enable new approaches to quantum control of
mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see
Journal-ref and DOI). This v2 corresponds to the published versio
Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms
About 300 experiments have tried to determine the value of the Newtonian
gravitational constant, G, so far, but large discrepancies in the results have
made it impossible to know its value precisely. The weakness of the
gravitational interaction and the impossibility of shielding the effects of
gravity make it very difficult to measure G while keeping systematic effects
under control. Most previous experiments performed were based on the torsion
pendulum or torsion balance scheme as in the experiment by Cavendish in 1798,
and in all cases macroscopic masses were used. Here we report the precise
determination of G using laser-cooled atoms and quantum interferometry. We
obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative
uncertainty of 150 parts per million (the combined standard uncertainty is
given in parentheses). Our value differs by 1.5 combined standard deviations
from the current recommended value of the Committee on Data for Science and
Technology. A conceptually different experiment such as ours helps to identify
the systematic errors that have proved elusive in previous experiments, thus
improving the confidence in the value of G. There is no definitive relationship
between G and the other fundamental constants, and there is no theoretical
prediction for its value, against which to test experimental results. Improving
the precision with which we know G has not only a pure metrological interest,
but is also important because of the key role that G has in theories of
gravitation, cosmology, particle physics and astrophysics and in geophysical
models.Comment: 3 figures, 1 tabl
Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing
Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities
The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
Recommended from our members
Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s =200 GeV
PHENIX reports differential cross sections of μμ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p+p collisions at s=200 GeV at forward and backward rapidity (1.2<|η|<2.2). The μμ pairs from cc, bb, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and pT. The azimuthal opening angle correlation between the muons from cc and bb decays and the pair-pT distributions are compared to distributions generated using pythia and powheg models, which both include next-to-leading order processes. The measured distributions for pairs from cc are consistent with pythia calculations. The cc data present narrower azimuthal correlations and softer pT distributions compared to distributions generated from powheg. The bb data are well described by both models. The extrapolated total cross section for bottom production is 3.75±0.24(stat)±0.500.35(syst)±0.45(global) [μb], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations
Recommended from our members
Production of π0 and η mesons in Cu+Au collisions at sNN =200 GeV
Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at sNN=200GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)-20GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling parametrization down to pT=2GeV/c, its asymptotic value is constant and consistent with Au+Au and p+p and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in e+e- collisions in a range of collision energies sNN=3-1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu+Cu collisions either does not affect the jet fragmentation into light mesons or it affects the π0 and η the same way
Recommended from our members
Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV.
Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dN_{ch}/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v_{2} over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow
- …
