4,159 research outputs found

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure

    Open defecation and childhood stunting in India: an ecological analysis of new data from 112 districts.

    Get PDF
    Poor sanitation remains a major public health concern linked to several important health outcomes; emerging evidence indicates a link to childhood stunting. In India over half of the population defecates in the open; the prevalence of stunting remains very high. Recently published data on levels of stunting in 112 districts of India provide an opportunity to explore the relationship between levels of open defecation and stunting within this population. We conducted an ecological regression analysis to assess the association between the prevalence of open defecation and stunting after adjustment for potential confounding factors. Data from the 2011 HUNGaMA survey was used for the outcome of interest, stunting; data from the 2011 Indian Census for the same districts was used for the exposure of interest, open defecation. After adjustment for various potential confounding factors--including socio-economic status, maternal education and calorie availability--a 10 percent increase in open defecation was associated with a 0.7 percentage point increase in both stunting and severe stunting. Differences in open defecation can statistically account for 35 to 55 percent of the average difference in stunting between districts identified as low-performing and high-performing in the HUNGaMA data. In addition, using a Monte Carlo simulation, we explored the effect on statistical power of the common practice of dichotomizing continuous height data into binary stunting indicators. Our simulation showed that dichotomization of height sacrifices statistical power, suggesting that our estimate of the association between open defecation and stunting may be a lower bound. Whilst our analysis is ecological and therefore vulnerable to residual confounding, these findings use the most recently collected large-scale data from India to add to a growing body of suggestive evidence for an effect of poor sanitation on human growth. New intervention studies, currently underway, may shed more light on this important issue

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Prospective Evaluation of Sleep Apnea as Manifestation of Heart Failure in Children

    Get PDF
    In adults with heart failure, central sleep apnea (CSA), often manifested as Cheyne–Stokes respiration, is common, and has been associated with adverse outcome. Heart failure in children is commonly caused by dilated cardiomyopathy (DCM). It is unknown whether children with heart failure secondary to DCM have CSA, and whether CSA is related to the severity of heart failure. In this prospective observational study, 37 patients (<18 year) with heart failure secondary to DCM were included. They underwent polysomnography, clinical and laboratory evaluation and echocardiographic assessment. After a median follow-up time of 2 years, eight patients underwent heart transplantation. CSA (apnea–hypopnea index [AHI] ≥1) was found in 19 % of the patients. AHI ranged from 1.2 to 4.5/h. The occurrence of CSA was not related to the severity of heart failure. Three older patients showed a breathing pattern mimicking Cheyne–Stokes respiration, two of whom required heart transplantation. CSA was found in 19 % of the children with heart failure secondary to DCM. No relation was found with the severity of heart failure. In a small subset of children with severe DCM, a pattern mimicking Cheyne–Stokes respiration was registered

    Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort

    Get PDF
    Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure
    corecore