12 research outputs found

    Marine microbes make a meal of oil.

    No full text
    Hundreds of millions of litres of petroleum enter the environment from both natural and anthropogenic sources every year. The input from natural marine oil seeps alone would be enough to cover all of the world's oceans in a layer of oil 20 molecules thick. That the globe is not swamped with oil is testament to the efficiency and versatility of the networks of microorganisms that degrade hydrocarbons, some of which have recently begun to reveal the secrets of when and how they exploit hydrocarbons as a source of carbon and energy

    The genus Piscirickettsia

    No full text
    The genus Piscirickettsia is part of the Piscirickettsiaceae family, belonging to the Gammaproteobacteria class within the Thiotrichales order. The family contains seven phylogenetically related genera (Cycloclasticus, Hydrogenovibrio, Sulfurivirga, Thioalkalimicrobium, Methylophaga, Thiomicrospira, and Piscirickettsia), with highly diverse characteristics, making them very different from one another. The genus Piscirickettsia comprises a single species called Piscirickettsia salmonis, a Gram-negative facultative intracellular fish pathogen that significantly affects the salmon industry. Since its first isolation in Chile in 1989, the bacterium has been reported in Norway, Scotland, Greece, Canada, and the USA, among others. To date, the complete genome sequence of P. salmonis has not been reported, and relevant aspects of its metabolism, virulence, and life cycle are still poorly understood

    Deep Sequencing of Myxilla (Ectyomyxilla) methanophila, an Epibiotic Sponge on Cold-Seep Tubeworms, Reveals Methylotrophic, Thiotrophic, and Putative Hydrocarbon-Degrading Microbial Associations

    No full text
    The encrusting sponge Myxilla (Ectyomyxilla) methanophila (Poecilosclerida: Myxillidae) is an epibiont on vestimentiferan tubeworms at hydrocarbon seeps on the upper Louisiana slope of the Gulf of Mexico. It has long been suggested that this sponge harbors methylotrophic bacteria due to its low delta C-13 value and high methanol dehydrogenase activity, yet the full community of microbial associations in M. methanophila remained uncharacterized. In this study, we sequenced 16S rRNA genes representing the microbial community in M. methanophila collected from two hydrocarbon-seep sites (GC234 and Bush Hill) using both Sanger sequencing and next-generation 454 pyrosequencing technologies. Additionally, we compared the microbial community in M. methanophila to that of the biofilm collected from the associated tubeworm. Our results revealed that the microbial diversity in the sponges from both sites was low but the community structure was largely similar, showing a high proportion of methylotrophic bacteria of the genus Methylohalomonas and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria of the genera Cycloclasticus and Neptunomonas. Furthermore, the sponge microbial clone library revealed the dominance of thioautotrophic gammaproteobacterial symbionts in M. methanophila. In contrast, the biofilm communities on the tubeworms were more diverse and dominated by the chemoorganotrophic Moritella at GC234 and methylotrophic Methylomonas and Methylohalomonas at Bush Hill. Overall, our study provides evidence to support previous suggestion that M. methanophila harbors methylotrophic symbionts and also reveals the association of PAH-degrading and thioautotrophic microbes in the sponge
    corecore