21 research outputs found
Heritable plant phenotypes track light and herbivory levels at fine spatial scales
Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant-common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant
Mathematical Modelling of the Effect of a Monovalent Solution on the Interaction of Protein Molecules
Genetic variants affecting plant size and chemical defenses jointly shape herbivory in<i>Arabidopsis</i>
Herbivorous insects exhibit strong feeding preferences when choosing among plant genotypes, yet experiments to map loci mediating plant susceptibility to herbivory rarely incorporate host choice. To address this gap, we applied genome-wide association (GWA) mapping to uncover genetic polymorphisms mediating damage from foraging insects (two populations ofScaptomyza flava) across a mixture ofArabidopsis thalianagenotypes in experimental enclosures. The effect of chemical defenses (glucosinolates) on herbivory depended on herbivore genotype. Unlike many studies that minimize the effects of host choice behavior, we also found a large effect of plant size on herbivory—likely through its effect on plant apparency—that was independent of herbivore genotype. These herbivory-associated loci are polymorphic at fine spatial scales, and thus have potential to shape variation in herbivory within natural populations. We also show that the polymorphism with the largest effect on herbivory underlies adaptive latitudinal variation inArabidopsisplant size across Europe. Overall, our results provide genetic support for ecological observations that variation in both chemical defenses and non-canonical defense traits (e.g., plant size and phenology) jointly shapes plant-herbivore interactions.</jats:p
Overexpression of Glutathione Transferase E7 in Drosophila Differentially Impacts Toxicity of Organic Isothiocyanates in Males and Females
Organic isothiocyanates (ITCs) are allelochemicals produced by plants in order to combat insects and other herbivores. The compounds are toxic electrophiles that can be inactivated and conjugated with intracellular glutathione in reactions catalyzed by glutathione transferases (GSTs). The Drosophila melanogaster GSTE7 was heterologously expressed in Escherichia coli and purified for functional studies. The enzyme showed high catalytic activity with various isothiocyanates including phenethyl isothiocyanate (PEITC) and allyl isothiocyanate (AITC), which in millimolar dietary concentrations conferred toxicity to adult D. melanogaster leading to death or a shortened life-span of the flies. In situ hybridization revealed a maternal contribution of GSTE7 transcripts to embryos, and strongest zygotic expression in the digestive tract. Transgenesis involving the GSTE7 gene controlled by an actin promoter produced viable flies expressing the GSTE7 transcript ubiquitously. Transgenic females show a significantly increased survival when subjected to the same PEITC treatment as the wild-type flies. By contrast, transgenic male flies show a significantly lower survival rate. Oviposition activity was enhanced in transgenic flies. The effect was significant in transgenic females reared in the absence of ITCs as well as in the presence of 0.15 mM PEITC or 1 mM AITC. Thus the GSTE7 transgene elicits responses to exposure to ITC allelochemicals which differentially affect life-span and fecundity of male and female flies
