5,156 research outputs found
Optimal shapes of compact strings
Optimal geometrical arrangements, such as the stacking of atoms, are of
relevance in diverse disciplines. A classic problem is the determination of the
optimal arrangement of spheres in three dimensions in order to achieve the
highest packing fraction; only recently has it been proved that the answer for
infinite systems is a face-centred-cubic lattice. This simply stated problem
has had a profound impact in many areas, ranging from the crystallization and
melting of atomic systems, to optimal packing of objects and subdivision of
space. Here we study an analogous problem--that of determining the optimal
shapes of closely packed compact strings. This problem is a mathematical
idealization of situations commonly encountered in biology, chemistry and
physics, involving the optimal structure of folded polymeric chains. We find
that, in cases where boundary effects are not dominant, helices with a
particular pitch-radius ratio are selected. Interestingly, the same geometry is
observed in helices in naturally-occurring proteins.Comment: 8 pages, 3 composite ps figure
Effect of Void Network on CMB Anisotropy
We study the effect of a void network on the CMB anisotropy in the
Einstein-de Sitter background using Thompson &Vishniac's model. We consider
comprehensively the Sacks-Wolfe effect, the Rees-Sciama effect and the
gravitational lensing effect. Our analysis includes the model of primordial
voids existing at recombination, which is realized in some inflationary models
associated with a first-order phase transition. If there exist primordial voids
whose comoving radius is larger than Mpc at recombination, not
only the Sachs-Wolfe effect but also the Rees-Sciama effect is appreciable even
for multipoles l\lsim1000 of the anisotropy spectrum. The gravitational
lensing effect, on the other hand, slightly smoothes the primary anisotropy;
quantitatively, our results for the void model are similar to the previous
results for a CDM model. All the effects, together, would give some constraints
on the configuration or origin of voids with high-resolution data of the CMB
anisotropy.Comment: 23 pages, latex, 12 eps figures, some calculations and discussions
are added, to appear in ApJ 510 (1999
Impact of calcium on salivary α-amylase activity, starch paste apparent viscosity and thickness perception
Thickness perception of starch-thickened products
during eating has been linked to starch viscosity and
salivary amylase activity. Calcium is an essential cofactor
for α-amylase and there is anecdotal evidence that adding
extra calcium affects amylase activity in processes like
mashing of beer. The aims of this paper were to (1) investigate the role of salivary calcium on α-amylase
activity and (2) to measure the effect of calcium concentration on apparent viscosity and thickness perception when interacting with salivary α-amylase in starch-based samples.
α-Amylase activity in saliva samples from 28 people
was assessed using a typical starch pasting cycle (up to 95 °C). The activity of the enzyme (as measured by the change in starch apparent viscosity) was maintained by the presence of calcium, probably by protecting the enzyme from heat denaturation. Enhancement of α-amylase activity by calcium at 37 °C was also observed although to a smaller extent. Sensory analysis showed a general trend of decreased
thickness perception in the presence of calcium, but the result was only significant for one pair of samples, suggesting a limited impact of calcium enhanced enzyme activity on perceived thickness
Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model
Endotoxin-induced uveitis (EIU) in rodents is a model of acute Toll-like receptor 4 (TLR4)-mediated organ inflammation, and has been used to model human anterior uveitis, examine leukocyte trafficking and test novel anti-inflammatory therapeutics. Wider adoption has been limited by the requirement for manual, non-specific, cell-count scoring of histological sections from each eye as a measure of disease severity. Here, we describe a comprehensive and efficient technique that uses ocular dissection and multimodal tissue analysis. This allows matched disease scoring by multicolour flow cytometric analysis of the inflammatory infiltrate, protein analysis on ocular supernatants and qPCR on remnant tissues of the same eye. Dynamic changes in cell populations could be identified and mapped to chemokine and cytokine changes over the course of the model. To validate the technique, dose-responsive suppression of leukocyte infiltration by recombinant interleukin-10 was demonstrated, as well as selective suppression of the monocyte (CD11b+Ly6C+) infiltrate, in mice deficient for eitherCcl2orCcr2 Optical coherence tomography (OCT) was used for the first time in this model to allowin vivoimaging of infiltrating vitreous cells, and correlated with CD11b+Ly6G+ counts to provide another unique measure of cell populations in the ocular tissue. Multimodal tissue analysis of EIU is proposed as a new standard to improve and broaden the application of this model
The gradient flow running coupling with twisted boundary conditions
We study the gradient flow for Yang-Mills theories with twisted boundary
conditions. The perturbative behavior of the energy density is used to define a running coupling at a scale given by the
linear size of the finite volume box. We compute the non-perturbative running
of the pure gauge coupling constant and conclude that the technique is
well suited for further applications due to the relatively mild cutoff effects
of the step scaling function and the high numerical precision that can be
achieved in lattice simulations. We also comment on the inclusion of matter
fields.Comment: 27 pages. LaTe
Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory
The impact of heavy mediators on neutrino oscillations is typically described
by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We
focus on leptonic dimension-six effective operators which do not produce
charged lepton flavor violation. These operators lead to particular
correlations among neutrino production, propagation, and detection non-standard
effects. We point out that these NSIs and NU phenomenologically lead, in fact,
to very similar effects for a neutrino factory, for completely different
fundamental reasons. We discuss how the parameters and probabilities are
related in this case, and compare the sensitivities. We demonstrate that the
NSIs and NU can, in principle, be distinguished for large enough effects at the
example of non-standard effects in the --sector, which basically
corresponds to differentiating between scalars and fermions as heavy mediators
as leading order effect. However, we find that a near detector at superbeams
could provide very synergistic information, since the correlation between
source and matter NSIs is broken for hadronic neutrino production, while NU is
a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq.
(27) correcte
Multimodal image analysis of clinical influences on preterm brain development.
OBJECTIVE: Premature birth is associated with numerous complex abnormalities of white and gray matter and a high incidence of long-term neurocognitive impairment. An integrated understanding of these abnormalities and their association with clinical events is lacking. The aim of this study was to identify specific patterns of abnormal cerebral development and their antenatal and postnatal antecedents. METHODS: In a prospective cohort of 449 infants (226 male), we performed a multivariate and data-driven analysis combining multiple imaging modalities. Using canonical correlation analysis, we sought separable multimodal imaging markers associated with specific clinical and environmental factors and correlated to neurodevelopmental outcome at 2 years. RESULTS: We found five independent patterns of neuroanatomical variation that related to clinical factors including age, prematurity, sex, intrauterine complications, and postnatal adversity. We also confirmed the association between imaging markers of neuroanatomical abnormality and poor cognitive and motor outcomes at 2 years. INTERPRETATION: This data-driven approach defined novel and clinically relevant imaging markers of cerebral maldevelopment, which offer new insights into the nature of preterm brain injury. Ann Neurol 2017;82:233-246
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
Flavoured soft leptogenesis and natural values of the B term
We revisit flavour effects in soft leptogenesis relaxing the assumption of
universality for the soft supersymmetry breaking terms. We find that with
respect to the case in which the heavy sneutrinos decay with equal rates and
equal CP asymmetries for all lepton flavours, hierarchical flavour
configurations can enhance the efficiency by more than two orders of magnitude.
This translates in more than three order of magnitude with respect to the
one-flavour approximation. We verify that lepton flavour equilibration effects
related to off-diagonal soft slepton masses are ineffective for damping these
large enhancements. We show that soft leptogenesis can be successful for
unusual values of the relevant parameters, allowing for and for values of the washout parameter up to .Comment: 23 pages, 5 figures postscript, Minor changes to match the published
version in JHE
Precision on leptonic mixing parameters at future neutrino oscillation experiments
We perform a comparison of the different future neutrino oscillation
experiments based on the achievable precision in the determination of the
fundamental parameters theta_{13} and the CP phase, delta, assuming that
theta_{13} is in the range indicated by the recent Daya Bay measurement. We
study the non-trivial dependence of the error on delta on its true value. When
matter effects are small, the largest error is found at the points where CP
violation is maximal, and the smallest at the CP conserving points. The
situation is different when matter effects are sizable. As a result of this
effect, the comparison of the physics reach of different experiments on the
basis of the CP discovery potential, as usually done, can be misleading. We
have compared various proposed super-beam, beta-beam and neutrino factory
setups on the basis of the relative precision of theta_{13} and the error on
delta. Neutrino factories, both high-energy or low-energy, outperform
alternative beam technologies. An ultimate precision on theta_{13} below 3% and
an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a
neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure
- …
