149 research outputs found
Effects of Weight Loss in Metabolically Healthy Obese Subjects after Laparoscopic Adjustable Gastric Banding and Hypocaloric Diet
Weight loss in metabolically healthy obese (MHO) subjects may result in deterioration of cardio-metabolic risk profile. We analyzed the effects of weight loss induced by laparoscopic adjustable gastric banding (LAGB) on cardio-metabolic risk factors in MHO and insulin resistant obese (IRO) individuals. This study included 190 morbidly obese non-diabetic subjects. Obese individuals were stratified on the basis of their insulin sensitivity index (ISI), estimated from an OGTT, into MHO (ISI index in the upper quartile) and IRO (ISI in the three lower quartiles). Anthropometric and cardio-metabolic variables were measured at baseline and 6-months after LAGB. Six months after LAGB, anthropometric measures were significantly reduced in both MHO and IRO. Percent changes in body weight, BMI, and waist circumference did not differ between the two groups. Fasting glucose and insulin levels, triglycerides, AST, and ALT were significantly reduced, and HDL cholesterol significantly increased, in both MHO and IRO subjects with no differences in percent changes from baseline. Insulin sensitivity increased in both MHO and IRO group. Insulin secretion was significantly reduced in the IRO group only. However, the disposition index significantly increased in both MHO and IRO individuals with no differences in percent changes from baseline between the two groups. The change in insulin sensitivity correlated with the change in BMI (r = −0.43; P<0.0001). In conclusion, our findings reinforce the recommendation that weight loss in response to LAGB intervention should be considered an appropriate treatment option for morbidly obese individuals regardless of their metabolic status, i.e. MHO vs. IRO subjects
TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPAR gamma 2
TonEBP is a key transcription factor in cellular adaptation to hypertonic stress, and also in macrophage activation. Since TonEBP is involved in inflammatory diseases such as rheumatoid arthritis and atherosclerosis, we asked whether TonEBP played a role in adipogenesis and insulin resistance. Here we report that TonEBP suppresses adipogenesis and insulin signaling by inhibiting expression of the key transcription factor PPAR gamma 2. TonEBP binds to the PPAR gamma 2 promoter and blocks the epigenetic transition of the locus which is required for the activation of the promoter. When TonEBP expression is reduced, the epigenetic transition and PPAR gamma 2 expression are markedly increased leading to enhanced adipogenesis and insulin response while inflammation is reduced. Thus, TonEBP is an independent determinant of adipose insulin sensitivity and inflammation. TonEBP is an attractive therapeutic target for insulin resistance in lieu of PPAR gamma agonistsopen0
Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes
BACKGROUND: Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile
"Predictability of body mass index for diabetes: Affected by the presence of metabolic syndrome?"
<p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) and body mass index (BMI, kg.m<sup>-2</sup>) are established independent risk factors in the development of diabetes; we prospectively examined their relative contributions and joint relationship with incident diabetes in a Middle Eastern cohort.</p> <p>Method</p> <p>participants of the ongoing Tehran lipid and glucose study are followed on a triennial basis. Among non-diabetic participants aged≥ 20 years at baseline (8,121) those with at least one follow-up examination (5,250) were included for the current study. Multivariate logistic regression models were used to estimate sex-specific adjusted odd ratios (ORs) and 95% confidence intervals (CIs) of baseline BMI-MetS categories (normal weight without MetS as reference group) for incident diabetes among 2186 men and 3064 women, aged ≥ 20 years, free of diabetes at baseline.</p> <p>Result</p> <p>During follow up (median 6.5 years); there were 369 incident diabetes (147 in men). In women without MetS, the multivariate adjusted ORs (95% CIs) for overweight (BMI 25-30 kg/m2) and obese (BMI≥30) participants were 2.3 (1.2-4.3) and 2.2 (1.0-4.7), respectively. The corresponding ORs for men without MetS were 1.6 (0.9-2.9) and 3.6 (1.5-8.4) respectively. As compared to the normal-weight/without MetS, normal-weight women and men with MetS, had a multivariate-adjusted ORs for incident diabetes of 8.8 (3.7-21.2) and 3.1 (1.3-7.0), respectively. The corresponding ORs for overweight and obese women with MetS reached to 7.7 (4.0-14.9) and 12.6 (6.9-23.2) and for men reached to 3.4(2.0-5.8) and 5.7(3.9-9.9), respectively.</p> <p>Conclusion</p> <p>This study highlights the importance of screening for MetS in normal weight individuals. Obesity increases diabetes risk in the absence of MetS, underscores the need for more stringent criteria to define healthy metabolic state among obese individuals. Weight reduction measures, thus, should be encouraged in conjunction with achieving metabolic targets not addressed by current definition of MetS, both in every day encounter and public health setting.</p
Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity.</p> <p>Methods</p> <p>This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m<sup>2</sup>) recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained.</p> <p>Results</p> <p>Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32]) and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86]) than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]). A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]). Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance.</p> <p>Conclusion</p> <p>A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that contribute to metabolic status in obese individuals.</p
Impact of two different periodized aerobic training on acute cerebrovascular response and cognitive performance in coronary heart disease patients
The aim of this study was to measure the effects of chronic and acute aerobic exercise at two different intensities on cognitive performance and cerebrovascular response in coronary heart disease (CHD) patients. Thirty-five CHD patients completed two exercise bouts at 30% and 70% of their respective peak aerobic power on an ergocycle while performing cognitive tasks, which included nonexecutive and executive conditions before and after a 3-month training intervention. Variations of oxy- deoxy- and total hemoglobin concentrations were measured on the left prefrontal cortex at both intensities using near-infrared spectroscopy. Aerobic exercise training consisted of linear and nonlinear periodization protocols for three sessions of 30–50 min per week for 12 weeks. Error rate (p < 0.001) and reaction time (p < 0.001) improved after the training program for the executive condition of the cognitive task, regardless of intensity and training groups. Cerebral oxygenation remained similar pre and post intervention for all conditions and acute exercise intensity. Despite the absence of conjunction between cerebral oxygenation and cognition, results suggest that both exercise training programs could improve cognition in CHD patients during acute exercise
Are we losing the battle against cardiometabolic disease? The case for a paradigm shift in primary prevention
Kraushaar LE, Krämer A. Are we losing the battle against cardiometabolic disease? The case for a paradigm shift in primary prevention. BMC Public Health. 2009;9(1):64.Background: Cardiovascular and diabetic disease are the leading and preventable causes of death worldwide. The currently prognosticated dramatic increase in disease burden over the next two decades, however, bespeaks a low confidence in our prevention ability. This conflicts with the almost enthusiastic reporting of study results, which demonstrate substantial risk reductions secondary to simple lifestyle changes. Discussion: There is a case to be made for a disregard of the difference between statistical significance and clinical relevance of the reported data. Nevertheless, lifestyle change remains the main weapon in our battle against the epidemic of cardiometabolic disease. But along the way from risk screening to intervention to maintenance the compound inefficiencies of current primary preventive strategies marginalize their impact. Summary: Unless we dramatically change the ways in which we deploy preventive interventions we will inevitably lose the battle. In this paper we will argue for three provocative strategy changes, namely (a) the disbanding of screening in favor of population-wide enrollment into preventive interventions, (b) the substitution of the current cost utility analysis for a return-on-investment centered appraisal of interventions, and (c) the replacement of standardized programs modeled around acute care by individualized and perpetual interventions
The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison
BACKGROUND: Body mass index (BMI, kg/m(2)) may not be the best marker for estimating the risk of obesity-related disease. Consistent with physiologic observations, an alternative index uses waist circumference (WC) and fasting triglycerides (TG) concentration to describe lipid overaccumulation. METHODS: The WC (estimated population minimum 65 cm for men and 58 cm for women) and TG concentration from the third National Health and Nutrition Examination Survey (N = 9,180, statistically weighted to represent 100.05 million US adults) were used to compute a "lipid accumulation product" [LAP = (WC-65) × TG for men and (WC-58) × TG for women] and to describe the population distribution of LAP. LAP and BMI were compared as categorical variables and as log-transformed continuous variables for their ability to identify adverse levels of 11 cardiovascular risk factors. RESULTS: Nearly half of the represented population was discordant for their quartile assignments to LAP and BMI. When 23.54 million with ordinal LAP quartile > BMI quartile were compared with 25.36 million with ordinal BMI quartile > LAP quartile (regression models adjusted for race-ethnicity and sex) the former had more adverse risk levels than the latter (p < 0.002) for seven lipid variables, uric acid concentration, heart rate, systolic and diastolic blood pressure. Further adjustment for age did not materially alter these comparisons except for blood pressures (p > 0.1). As continuous variables, LAP provided a consistently more adverse beta coefficient (slope) than BMI for nine cardiovascular risk variables (p < 0.01), but not for blood pressures (p > 0.2). CONCLUSION: LAP (describing lipid overaccumulation) performed better than BMI (describing weight overaccumulation) for identifying US adults at cardiovascular risk. Compared to BMI, LAP might better predict the incidence of cardiovascular disease, but this hypothesis needs prospective testing
Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects
<p>Abstract</p> <p>Background</p> <p>Prevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP) and Triglyceride (TG) (LAT) vs High ASP and TG (HAT). Subcutaneous (SC) and omental (OM) adipose tissues (n = 21) were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined.</p> <p>Methods</p> <p>LAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1). ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p < 0.01 each). Differences between LAT and HAT group were almost exclusively in SC tissue, with little difference in OM tissue. Increased C5L2 (p < 0.01), an ASP receptor, in HAT suggests a compensatory ASP pathway, associated with increased TG storage.</p> <p>Results</p> <p>HAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL), lipolysis (HSL, CES1, perilipin), fatty acid binding proteins (FABP1, FABP3) and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ). By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7). HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p < 0.025.</p> <p>Conclusion</p> <p>Taken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.</p
Insulin resistance in lean and overweight non-diabetic Caucasian adults: Study of its relationship with liver triglyceride content, waist circumference and BMI
Insulin resistance is the pathophysiological precursor of type 2 diabetes mellitus (DM-2), and its relationship with non-alcoholic fatty liver disease (NAFLD) has been widely studied in patients with obesity or metabolic syndrome using not only ultrasound but also liver biopsies or proton magnetic resonance spectroscopy (H1-MRS) to assess liver fat content. In contrast, there are no studies on insulin resistance and NAFLD in lean or overweight Caucasian individuals using H1-MRS or liver biopsies for the quantification of hepatic triglyceride content. Our objectives were to study the presence of insulin resistance in lean and overweight Caucasian adults and investigate its possible relationship with liver triglyceride content, waist circumference (as proxy of visceral adiposity), BMI, and cardiometabolic risk factors.A cross-sectional study was conducted in 113 non-obese, non-diabetic individuals classified as overweight (BMI 25–29.9 kg/m2) or lean (BMI 19.5–24.9 kg/m2). Hepatic triglyceride content was quantified by 3T H1-MRS. NAFLD was defined as hepatic triglyceride content >5.56%. Insulin resistance (HOMA-IR), serum adiponectin, and tumor necrosis factor (TNF) were determined.HOMA-IR was significantly correlated with hepatic triglyceride content (r:0.76; p<0.0001). The lean-with-NAFLD group had significantly higher HOMA-IR (p<0.001) and lower serum adiponectin (p<0.05) than the overweight-without-NAFLD group. Insulin resistance was independently associated with NAFLD but not with waist circumference or BMI. Regression analysis showed hepatic triglyceride content to be the most important determinant of insulin resistance (p<0.01).Our findings suggest that NAFLD, once established, seems to be involved in insulin resistance and cardio-metabolic risk factors above and beyond waist circumference and BMI in non-obese, non-diabetic Caucasian individuals
- …
