140 research outputs found
Emerging infectious disease implications of invasive mammalian species : the greater white-toothed shrew (Crocidura russula) is associated with a novel serovar of pathogenic Leptospira in Ireland
The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira
Fine-scale seascape genomics of an exploited marine species, the common cockle Cerastoderma edule, using a multi-modelling approach
Methanethiol-dependent dimethylsulfide production in soil environments
Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 μmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates
Retracing the history and planning the future of the red squirrel (Sciurus vulgaris) in Ireland using non-invasive genetics
The Eurasian red squirrel’s (Sciurus vulgaris) history in Ireland is largely unknown, but the original population is thought to have been driven to extinction by humans in the 17th Century, and multiple records exist for its subsequent reintroduction in the 19th 4 Century. However, it is currently unknown how these reintroductions affect the red squirrel population today, or may do so in the future. In this study, we report on the development of a DNA toolkit for the non-invasive genetic study of the red squirrel. Non-invasively collected red squirrel samples were combined with other samples collected throughout Ireland and previously published mitochondrial DNA (mtDNA) data from Ireland, Great Britain and continental Europe to give an insight into population genetics and historical introductions of the red squirrel in Ireland. Our findings demonstrate that the Irish red squirrel population is on a national scale quite genetically diverse, but at a local level contains relatively low levels of genetic diversity and evidence of genetic structure. This is likely an artefact of the introduction of a small number of genetically similar animals to specific sites. A lack of continuous woodland cover in Ireland has prevented further mixing with animals of different origins that may have been introduced even to neighbouring sites. Consequently, some of these genetically isolated populations are or may in the future be at risk of extinction. The Irish red squirrel population contains mtDNA haplotypes of both a British and Continental European origin, the former of which are now extinct or simply not recorded in contemporary Great Britain. The Irish population is therefore important in terms of red squirrel conservation not only in Ireland, but also for Great Britain, and should be appropriately managed
The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland
The red fox (Vulpes vulpes) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002–2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management
Shark-dust: Application of high-throughput DNA sequencing of processing residues for trade monitoring of threatened sharks and rays
Illegal fishing, unregulated bycatch, and market demand for certain products (e.g., fins) are largely responsible for the rapid global decline of shark and ray populations. Controlling trade of endangered species remains difficult due to product variety, taxonomic ambiguity, and trade complexity. The genetic tools traditionally used to identify traded species typically target individual tissue samples, and are time-consuming and/or species-specific. Here, we performed high-throughput sequencing of trace DNA fragments retrieved from dust and scraps left behind by trade activities. We metabarcoded “shark-dust” samples from seven processing plants in the world's biggest shark landing site (Java, Indonesia), and identified 61 shark and ray taxa (representing half of all chondrichthyan orders), more than half of which could not be recovered from tissue samples collected in parallel from the same sites. Importantly, over 80% of shark-dust sequences were found to belong to CITES-listed species. We argue that this approach is likely to become a powerful and cost-effective monitoring tool wherever wildlife is traded
ROCK Inhibitor Is Not Required for Embryoid Body Formation from Singularized Human Embryonic Stem Cells
We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications
Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding.
The biodiverse Neotropical ecoregion remains insufficiently assessed, poorly managed, and threatened by unregulated human activities. Novel, rapid and cost-effective DNA-based approaches are valuable to improve understanding of the biological communities and for biomonitoring in remote areas. Here, we evaluate the potential of environmental DNA (eDNA) metabarcoding for assessing the structure and distribution of fish communities by analysing water and sediment from 11 locations along the Jequitinhonha River catchment (Brazil). Each site was sampled twice, before and after a major rain event in a five-week period and fish diversity was estimated using high-throughput sequencing of 12S rRNA amplicons. In total, 252 Molecular Operational Taxonomic Units (MOTUs) and 34 fish species were recovered, including endemic, introduced, and previously unrecorded species for this basin. Spatio-temporal variation of eDNA from fish assemblages was observed and species richness was nearly twice as high before the major rain event compared to afterwards. Yet, peaks of diversity were primarily associated with only four of the locations. No correlation between β-diversity and longitudinal distance or presence of dams was detected, but low species richness observed at sites located near dams might that these anthropogenic barriers may have an impact on local fish diversity. Unexpectedly high α-diversity levels recorded at the river mouth suggest that these sections should be further evaluated as putative "eDNA reservoirs" for rapid monitoring. By uncovering spatio-temporal changes, unrecorded biodiversity components, and putative anthropogenic impacts on fish assemblages, we further strengthen the potential of eDNA metabarcoding as a biomonitoring tool, especially in regions often neglected or difficult to access
Shark and ray trade in and out of Indonesia: Addressing knowledge gaps on the path to sustainability
Indonesian marine resources are among the richest on the planet, sustaining highly diverse fisheries. These fisheries include the largest shark and ray landings in the world, making Indonesia one of the world’s largest exporters of elasmobranch products. Socio-economic and food security considerations pertaining to Indonesian communities add further layers of complexity to the management and conservation of these vulnerable species. This study investigates the elasmobranch trade flows in and out of Indonesia and attempts to examine patterns and drivers of the current scenario. We identify substantial discrepancies between reported landings and declared exports, and between Indonesian exports in elasmobranch fin and meat products and the corresponding figures reported by importing countries. These mismatches are estimated to amount to over 20.9 M for fins and meat, respectively, for the period between 2012 and 2018. Although the declared exports are likely to be an underestimation because of significant unreported or illegal trading activities, we note that domestic consumption of shark and ray products may also explain these discrepancies. The study also unearths a general scenario of unsystematic data collection and lack of granularity of product terminology, which is inadequate to meet the challenges of over-exploitation, illegal trade and food security in Indonesia. We discuss how to improve data transparency to support trade regulations and governance actions, by improving inspection measures, and conserving elasmobranch populations without neglecting the socio-economic dimension of this complex system
Female sexual preferences toward conspecific and hybrid male mating calls in two species of polygynous deer, Cervus elaphus and C. nippon
The behavioral processes at the basis of hybridization and introgression are understudied in terrestrial mammals. We use a unique model to test the role of sexual signals as a reproductive barrier to introgression by investigating behavioral responses to male sexual calls in estrous females of two naturally allopatric but reproductively compatible deer species, red deer and sika deer. Previous studies demonstrated asymmetries in acoustic species discrimination between these species: most but not all female red deer prefer conspecific over sika deer male calls while female sika deer exhibit no preference differences. Here, we extend this examination of acoustic species discrimination to the role of male sexual calls in introgression between parent species and hybrids. Using two-speaker playback experiments, we compared the preference responses of estrous female red and sika deer to male sexual calls from conspecifics versus red × sika hybrids. These playbacks simulate early secondary contact between previously allopatric species after hybridization has occurred. Based on previous conspecific versus heterospecific playbacks, we predicted that most female red deer would prefer conspecific calls while female sika deer would show no difference in their preference behaviors toward conspecific and hybrid calls. However, results show that previous asymmetries did not persist as neither species exhibited more preferences for conspecific over hybrid calls. Thus, vocal behavior is not likely to deter introgression between these species during the early stages of sympatry. On a wider scale, weak discrimination against hybrid sexual signals could substantially contribute to this important evolutionary process in mammals and other taxa
- …
