1,426 research outputs found
Extracardiac 18F-florbetapir imaging in patients with systemic amyloidosis: more than hearts and minds
PURPOSE: 18F-Florbetapir has been reported to show cardiac uptake in patients with systemic light-chain amyloidosis (AL). This study systematically assessed uptake of 18F-florbetapir in patients with proven systemic amyloidosis at sites outside the heart. METHODS: Seventeen patients with proven cardiac amyloidosis underwent 18F-florbetapir PET/CT imaging, 15 with AL and 2 with transthyretin amyloidosis (ATTR). Three patients had repeat scans. All patients had protocolized assessment at the UK National Amyloidosis Centre including imaging with 123I-serum amyloid P component (SAP). 18F-Florbetapir images were assessed for areas of increased tracer accumulation and time-uptake curves in terms of standardized uptake values (SUVmean) were produced. RESULTS: All 17 patients showed 18F-florbetapir uptake at one or more extracardiac sites. Uptake was seen in the spleen in 6 patients (35%; 6 of 9, 67%, with splenic involvement on 123I-SAP scintigraphy), in the fat in 11 (65%), in the tongue in 8 (47%), in the parotids in 8 (47%), in the masticatory muscles in 7 (41%), in the lungs in 3 (18%), and in the kidney in 2 (12%) on the late half-body images. The 18F-florbetapir spleen retention index (SRI) was calculated. SRI >0.045 had 100% sensitivity/sensitivity (in relation to 123I-SAP splenic uptake, the current standard) in detecting splenic amyloid on dynamic imaging and a sensitivity of 66.7% and a specificity of 100% on the late half-body images. Intense lung uptake was seen in three patients, one of whom had lung interstitial infiltration suggestive of amyloid deposition on previous high-resolution CT. Repeat imaging showed a stable appearance in all three patients suggesting no early impact of treatment response. CONCLUSION: 18F-Florbetapir PET/CT is a promising tool for the detection of extracardiac sites of amyloid deposition. The combination of uptake in the heart and uptake in the spleen on 18F-florbetapir PET/CT, a hallmark of AL, suggests that this tracer holds promise as a screening tool for AL
CPT Violation, Strings, and Neutral-Meson Systems
This talk provides a short overview of recent results on possible CPT
violation and some associated experimental signatures.Comment: Presented at Orbis Scientiae, January 199
Global distribution of two fungal pathogens threatening endangered sea turtles
This work was supported by grants of Ministerio de Ciencia e Innovación, Spain (CGL2009-10032, CGL2012-32934). J.M.S.R was supported by PhD fellowship of the CSIC (JAEPre 0901804). The Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council supported P.V.W. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks Machalilla National Park in Ecuador, Pacuare Nature Reserve in Costa Rica, Foundations Natura 2000 in Cape Verde and Equilibrio Azul in Ecuador, Dr. Jesus Muñoz, Dr. Ian Bell, Dr. Juan Patiño for help and technical support during samplingPeer reviewedPublisher PD
Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State
We propose a dark-matter (DM) admixed density-dependent equation of state
where the fermionic DM interacts with the nucleons via Higgs portal. Presence
of DM can hardly influence the particle distribution inside neutron star (NS)
but can significantly affect the structure as well as equation of state (EOS)
of NS. Introduction of DM inside NS softens the equation of state. We explored
the effect of variation of DM mass and DM Fermi momentum on the NS EOS.
Moreover, DM-Higgs coupling is constrained using dark matter direct detection
experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and
DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi
momentum. We have done our analysis by considering different NS masses. Also DM
mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling.
We calculated the variations of luminosity and temperature of NS with time for
all EOSs considered in our work and then compared our calculations with the
observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E
1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR
B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS
agrees well with the pulsar data for lighter and medium mass NSs but cooling is
very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all
considered NS masses, all chosen DM masses and Fermi momenta agree well with
the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR
B2334+61. Cooling becomes faster as compared to normal NSs in case of
increasing DM mass and Fermi momenta. It is infered from the calculations that
if low mass super cold NSs are observed in future that may support the fact
that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European
Physical Journal
Dirac Equation with Spin Symmetry for the Modified P\"oschl-Teller Potential in -dimensions
We present solutions of the Dirac equation with spin symmetry for vector and
scalar modified P\"oschl-Teller potential within framework of an approximation
of the centrifugal term. The relativistic energy spectrum is obtained using the
Nikiforov-Uvarov method and the two-component spinor wavefunctions are obtain
are in terms of the Jacobi polynomials. It is found that there exist only
positive-energy states for bound states under spin symmetry, and the energy
levels increase with the dimension and the potential range parameter .Comment: 9 pages and 1tabl
The CMB and the measure of the multiverse
In the context of eternal inflation, cosmological predictions depend on the
choice of measure to regulate the diverging spacetime volume. The spectrum of
inflationary perturbations is no exception, as we demonstrate by comparing the
predictions of the fat geodesic and causal patch measures. To highlight the
effect of the measure---as opposed to any effects related to a possible
landscape of vacua---we take the cosmological model, including the model of
inflation, to be fixed. We also condition on the average CMB temperature
accompanying the measurement. Both measures predict a 1-point expectation value
for the gauge-invariant Newtonian potential, which takes the form of a
(scale-dependent) monopole, in addition to a related contribution to the
3-point correlation function, with the detailed form of these quantities
differing between the measures. However, for both measures both effects are
well within cosmic variance. Our results make clear the theoretical relevance
of the measure, and at the same time validate the standard inflationary
predictions in the context of eternal inflation.Comment: 28 pages; v2: reference added, some clarification
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations.
PURPOSE OF REVIEW: Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS: Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
- …
