25 research outputs found
Gut Microbiota, Probiotics and Diabetes
Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal
microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from
the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin
receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins
within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic
β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in
animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis
of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence
suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of
adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes
Immunosuppression in the Management of Presumed Non-infective Uveitis; Are We Sure What We are Treating? Notes on the Antimicrobial Properties of the Systemic Immunosuppressants
Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome
Bacteriophages have important roles in the ecology of the human gut microbiome but are under-represented in reference databases. To address this problem, we assembled the Metagenomic Gut Virus catalogue that comprises 189,680 viral genomes from 11,810 publicly available human stool metagenomes. Over 75% of genomes represent double-stranded DNA phages that infect members of the Bacteroidia and Clostridia classes. Based on sequence clustering we identified 54,118 candidate viral species, 92% of which were not found in existing databases. The Metagenomic Gut Virus catalogue improves detection of viruses in stool metagenomes and accounts for nearly 40% of CRISPR spacers found in human gut Bacteria and Archaea. We also produced a catalogue of 459,375 viral protein clusters to explore the functional potential of the gut virome. This revealed tens of thousands of diversity-generating retroelements, which use error-prone reverse transcription to mutate target genes and may be involved in the molecular arms race between phages and their bacterial hosts
