20 research outputs found

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    Correlated data in differential privacy: Definition and analysis

    Full text link
    Differential privacy is a rigorous mathematical framework for evaluating and protecting data privacy. In most existing studies, there is a vulnerable assumption that records in a dataset are independent when differential privacy is applied. However, in real-world datasets, records are likely to be correlated, which may lead to unexpected data leakage. In this survey, we investigate the issue of privacy loss due to data correlation under differential privacy models. Roughly, we classify existing literature into three lines: (1) using parameters to describe data correlation in differential privacy, (2) using models to describe data correlation in differential privacy, and (3) describing data correlation based on the framework of Pufferfish. First, a detailed example is given to illustrate the issue of privacy leakage on correlated data in real scenes. Then our main work is to analyze and compare these methods, and evaluate situations that these diverse studies are applied. Finally, we propose some future challenges on correlated differential privacy

    Coding against delayed adversaries

    No full text
    In this work we consider the communication of information in the presence of a delayed adversarial jammer. In the setting under study, a sender wishes to communicate a message to a receiver by transmitting a codeword x = ( x(1), ..., x(n)) over a communication channel. The adversarial jammer can view the transmitted symbols xi one at a time, but must base its action ( when changing xi) on x(j) for j 0 present a single letter characterization of the achievable communication rate in the presence of such adversaries

    Election Manipulation 100

    No full text

    Privacy Analysis of Query-Set-Size Control

    No full text

    Learning without peeking: Secure multi-party computation genetic programming

    No full text
    Genetic Programming is widely used to build predictive models for defect proneness or development efforts. The predictive modelling often depends on the use of sensitive data, related to past faults or internal resources, as training data. We envision a scenario in which revealing the training data constitutes a violation of privacy. To ensure organisational privacy in such a scenario, we propose SMCGP, a method that performs Genetic Programming as Secure Multiparty Computation. In SMCGP, one party uses GP to learn a model of training data provided by another party, without actually knowing each datapoint in the training data. We present an SMCGP approach based on the garbled circuit protocol, which is evaluated using two problem sets: a widely studied symbolic regression benchmark, and a GP-based fault localisation technique with real world fault data from Defects4J benchmark. The results suggest that SMCGP can be equally accurate as the normal GP, but the cost of keeping the training data hidden can be about three orders of magnitude slower execution
    corecore