214 research outputs found
Connecting the dots: Potential of data integration to identify regulatory snps in late-onset alzheimer's disease GWAS findings
Late-onset Alzheimer's disease (LOAD) is a multifactorial disorder with over twenty loci associated with disease risk. Given the number of genome-wide significant variants that fall outside of coding regions, it is possible that some of these variants alter some function of gene expression rather than tagging coding variants that alter protein structure and/or function. RegulomeDB is a database that annotates regulatory functions of genetic variants. In this study, we utilized RegulomeDB to investigate potential regulatory functions of lead single nucleotide polymorphisms (SNPs) identified in five genome-wide association studies (GWAS) of risk and age-at onset (AAO) of LOAD, as well as SNPs in LD (r2≥0.80) with the lead GWAS SNPs. Of a total 614 SNPs examined, 394 returned RegulomeDB scores of 1-6. Of those 394 variants, 34 showed strong evidence of regulatory function (RegulomeDB score ,3), and only 3 of them were genome-wide significant SNPs (ZCWPW1/ rs1476679, CLU/rs1532278 and ABCA7/rs3764650). This study further supports the assumption that some of the non-coding GWAS SNPs are true associations rather than tagged associations and demonstrates the application of RegulomeDB to GWAS data.©2014 Rosenthal et al
Routes for breaching and protecting genetic privacy
We are entering the era of ubiquitous genetic information for research,
clinical care, and personal curiosity. Sharing these datasets is vital for
rapid progress in understanding the genetic basis of human diseases. However,
one growing concern is the ability to protect the genetic privacy of the data
originators. Here, we technically map threats to genetic privacy and discuss
potential mitigation strategies for privacy-preserving dissemination of genetic
data.Comment: Draft for comment
Evaluation of next-generation sequencing software in mapping and assembly
Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS) platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific biological applications.published_or_final_versio
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Home Telehealth Uptake and Continued Use Among Heart Failure and Chronic Obstructive Pulmonary Disease Patients: a Systematic Review
Background
Home telehealth has the potential to benefit heart failure (HF) and chronic obstructive pulmonary disease (COPD) patients, however large-scale deployment is yet to be achieved.
Purpose
The aim of this review was to assess levels of uptake of home telehealth by patients with HF and COPD and the factors that determine whether patients do or do not accept and continue to use telehealth.
Methods
This research performs a narrative synthesis of the results from included studies.
Results
Thirty-seven studies met the inclusion criteria. Studies that reported rates of refusal and/or withdrawal found that almost one third of patients who were offered telehealth refused and one fifth of participants who did accept later abandoned telehealth. Seven barriers to, and nine facilitators of, home telehealth use were identified.
Conclusions
Research reports need to provide more details regarding telehealth refusal and abandonment, in order to understand the reasons why patients decide not to use telehealth
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Plume Characterization of a Typical South African Braai
To braai is part of the South African heritage that transcends ethnic barriers and socio-economic groups. In this paper, a comprehensive analysis of atmospheric gaseous and aerosol species within a plume originating from a typical South African braai is presented. Braai experiments were conducted at Welgegund – a comprehensively equipped regional background atmospheric air quality and climate change monitoring station. Five distinct phases were identified during the braai. Sulphur dioxide (SO2), nitrogen oxides(NOx) and carbonmonoxide (CO) increased significantly, while ozone (O3) did not increase notably. Aromatic and alkane volatile organic compounds were determined, with benzene exceeding the 2015 South African one-year ambient air quality limit. A comparison of atmospheric PM10 (particulate matter of an aerodynamic diameter ≤10 μm) concentrations with the 24-hour ambient limit indicated that PM10 is problematic during the meat grilling phase. From a climatic point of view, relatively high single scattering albedo (ωo) indicated a cooling aerosol direct effect, while periods with lowerωo coincided with peak black carbon (BC) emissions. The highest trace metal concentrations were associated with species typically present in ash. The lead (Pb) concentration was higher than the annual ambient air quality limit. Sulphate (SO4 2–), calcium (Ca2+) and magnesium (Mg2+) were the dominant water-soluble species present in the aerosols. The largest number of organic aerosol compounds was in the PM 2.5–1 fraction, which also had the highest semi-quantified concentration. The results indicated that a recreational braai does not pose significant health risks. However, the longer exposure periods that are experienced by occupational vendors, will significantly increase health risks.KEYWORDS Braai (barbeque), atmospheric gaseous species, aerosols, atmospheric organic compounds, optical properties, chemical properties
Application of GRADE: Making evidence-based recommendations about diagnostic tests in clinical practice guidelines
<p>Abstract</p> <p>Background</p> <p>Accurate diagnosis is a fundamental aspect of appropriate healthcare. However, clinicians need guidance when implementing diagnostic tests given the number of tests available and resource constraints in healthcare. Practitioners of health often feel compelled to implement recommendations in guidelines, including recommendations about the use of diagnostic tests. However, the understanding about diagnostic tests by guideline panels and the methodology for developing recommendations is far from completely explored. Therefore, we evaluated the factors that guideline developers and users need to consider for the development of implementable recommendations about diagnostic tests.</p> <p>Methods</p> <p>Using a critical analysis of the process, we present the results of a case study using the Grading of Recommendations Applicability, Development and Evaluation (GRADE) approach to develop a clinical practice guideline for the diagnosis of Cow Milk Allergy with the World Allergy Organization.</p> <p>Results</p> <p>To ensure that guideline panels can develop informed recommendations about diagnostic tests, it appears that more emphasis needs to be placed on group processes, including question formulation, defining patient-important outcomes for diagnostic tests, and summarizing evidence. Explicit consideration of concepts of diagnosis from evidence-based medicine, such as pre-test probability and treatment threshold, is required to facilitate the work of a guideline panel and to formulate implementable recommendations.</p> <p>Discussion</p> <p>This case study provides useful guidance for guideline developers and clinicians about what they ought to demand from clinical practice guidelines to facilitate implementation and strengthen confidence in recommendations about diagnostic tests. Applying a structured framework like the GRADE approach with its requirement for transparency in the description of the evidence and factors that influence recommendations facilitates laying out the process and decision factors that are required for the development, interpretation, and implementation of recommendations about diagnostic tests.</p
Auditory-Motor Mapping Training as an Intervention to Facilitate Speech Output in Non-Verbal Children with Autism: A Proof of Concept Study
Although up to 25% of children with autism are non-verbal, there are very few interventions that can reliably produce significant improvements in speech output. Recently, a novel intervention called Auditory-Motor Mapping Training (AMMT) has been developed, which aims to promote speech production directly by training the association between sounds and articulatory actions using intonation and bimanual motor activities. AMMT capitalizes on the inherent musical strengths of children with autism, and offers activities that they intrinsically enjoy. It also engages and potentially stimulates a network of brain regions that may be dysfunctional in autism. Here, we report an initial efficacy study to provide ‘proof of concept’ for AMMT. Six non-verbal children with autism participated. Prior to treatment, the children had no intelligible words. They each received 40 individual sessions of AMMT 5 times per week, over an 8-week period. Probe assessments were conducted periodically during baseline, therapy, and follow-up sessions. After therapy, all children showed significant improvements in their ability to articulate words and phrases, with generalization to items that were not practiced during therapy sessions. Because these children had no or minimal vocal output prior to treatment, the acquisition of speech sounds and word approximations through AMMT represents a critical step in expressive language development in children with autism
Effects of cereal breakfasts on postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products
<p>Abstract</p> <p>Background</p> <p>Rye products have been demonstrated to lower the acute insulin demand, induce a low and prolonged blood glucose response (high Glycemic Profile, GP) and reduce subclinical inflammation. These products may therefore contribute to a lowered risk of obesity, type 2 diabetes and cardio vascular disease. The objective of the present paper was to evaluate the mechanism for a reduced postprandial insulin demand with rye products, and to explore possible appetite regulating properties.</p> <p>Methods</p> <p>10 healthy subjects were served breakfast meals (50 g of available starch) with endosperm- or whole grain rye breads, with and without lactic acid, boiled whole grain rye- (RK) or wheat (WK) kernels, or white wheat bread reference (WWB) in random order in a cross-over design. Plasma concentrations of glucose, ghrelin, serum insulin, free fatty acids, adiponectin, breath hydrogen excretion (H<sub>2</sub>), and subjective satiety was evaluated during the postprandial phase. 270 min after the breakfast, an ad lib lunch buffet was served and the voluntary energy intake (EI) was registered.</p> <p>Results</p> <p>All rye products and WK induced lower insulinemic indices (II) than WWB. A lower incremental insulin peak following breakfast correlated with a lower EI at lunch (r = 0.38). A low II was related to improved satiety in the early postprandial phase (fullness AUC 0-60 min, r = -0.36). RK induced a higher GP compared to WWB and WK. A higher GP was related to a lowered <it>desire to eat </it>before lunch (AUC 210-270) and to a lower concentration of ghrelin in the late postprandial phase after breakfast (270 min), r = -0.29 and -0.29), which in turn was related to a lower voluntary EI (r = 0.43 and 0.33). The RK breakfast improved satiety in the early postprandial phase (0-60 min) compared to WWB, and induced a lower EI at lunch (-16%). A high content of indigestible carbohydrates in the breakfast products was related to improved satiety (0-60 min, r = 0.68 for fullness), and a higher breath H<sub>2 </sub>in the late postprandial phase (120-270 and 270-390 min, r = 0.46 and 0.70). High H<sub>2 </sub>(AUC 120-270 min) also correlated with lower EI (r = -0.34).</p> <p>Conclusions</p> <p>Rye products, rich in indigestible carbohydrates, induce colonic fermentation already post the breakfast meal, and lowers acute insulin responses. A high excretion of breath H2 also correlated with a higher GP. Especially, rye kernels induced a high GP which was associated with a 16% lowering of energy intake at a subsequent lunch meal. The bulking effect of rye fiber, colonically derived fermentation metabolites, a high GP and a low insulin response possibly all contributes to the benefits on glucose- and appetite regulation seen in an acute and semi-acute perspective.</p
- …
