2,351 research outputs found
Prospects for Spin Physics at RHIC
Colliding beams of 70% polarized protons at up to =500 GeV, with
high luminosity, L=2 cmsec, will represent a
new and unique laboratory for studying the proton. RHIC-Spin will be the first
polarized-proton collider and will be capable of copious production of jets,
directly produced photons, and and bosons. Features will include direct
and precise measurements of the polarization of the gluons and of ,
, , and quarks in a polarized proton. Parity violation searches
for physics beyond the standard model will be competitive with unpolarized
searches at the Fermilab Tevatron. Transverse spin will explore transversity
for the first time, as well as quark-gluon correlations in the proton. Spin
dependence of the total cross section and in the Coulomb nuclear interference
region will be measured at collider energies for the first time. These
qualitatively new measurements can be expected to deepen our understanding of
the structure of matter and of the strong interaction.Comment: 51 pages, 22 figures. Scheduled to appear in the Annual Review of
Nuclear and Particle Science Vol. 50, to be published in December 2000 by
Annual Reviews, http://AnnualReviews.or
Salvage Fractionated Stereotactic Re-irradiation (FSRT) for Patients with Recurrent High Grade Gliomas Progressed after Bevacizumab Treatment
Purpose/Objectives: Bevacizumab failure is a major clinical problem in the manage- ment of high grade gliomas (HGG), with a median overall survival of less than 4 months (m). This study evaluated the efficacy of fractionated stereotactic re-irradiation (FSRT) for patients with HGG after progression on Bevacizumab.
Materials/Methods: Retrospective review was conducted of patients treated with FSRT after progression on bevacizumab. A total of 36 patients were identified. FSRT was most commonly delivered in 3.5 Gy fractions to a total dose of 35 Gy. Survival from initial diagnosis, as well as from recurrence and re-irradiation, were utilized as study endpoints. Univariate and multivariate analysis was performed.
Results: Among the 36 patients, 31 patients had recurrent glioblastoma, and 5 patients had recurrent anaplastic astrocytoma. The median time from initial bevacizumab treatment to FSRT was 8.5 m (range 2.3 – 32.0 m). The median plan target volume for FSRT was 27.5 cc (range 1.95 – 165 cc). With a median follow up of 20.4 m, the overall survival of the patients since initial diagnosis was also 24.9 m. The median overall survival after initiation of bevacizumab was 13.4 months. The median overall survival from FSRT was 4.8 m. FSRT treatment was well tolerated with no Grade \u3e3 toxicity.
Conclusions: Favorable outcomes were observed in patients with recurrent HGG who received salvage FSRT after bevacizumab failure. The treatment was well tolerated. Prospective study is warranted to further evaluate the efficacy of salvage FSRT for selected patients with recurrent HGG amenable to FSRT, who had failed bevacizumab treatment
Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability
The presence of right-handed neutrinos in the type I seesaw mechanism may
lead to significant corrections to the RG evolution of the Higgs self-coupling.
Compared to the Standard Model case, the Higgs mass window can become narrower,
and the cutoff scale become lower. Naively, these effects decrease with
decreasing right-handed neutrino mass. However, we point out that the unknown
Dirac Yukawa matrix may impact the vacuum stability constraints even in the low
scale seesaw case not far away from the electroweak scale, hence much below the
canonical seesaw scale of 10^15 GeV. This includes situations in which
production of right-handed neutrinos at colliders is possible. We illustrate
this within a particular parametrization of the Dirac Yukawas and with explicit
low scale seesaw models. We also note the effect of massive neutrinos on the
top quark Yukawa coupling, whose high energy value can be increased with
respect to the Standard Model case.Comment: 17 pages, 7 figures, minor revisions, version to appear in JHE
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
Iron Status and Analysis of Efficacy and Safety of Ferric Carboxymaltose Treatment in Patients with Inflammatory Bowel Disease
Background and Aims:We analyzed iron deficiency and the therapeutic response following intravenous ferric carboxymaltose in a large single-center inflammatory bowel disease (IBD) cohort. Methods: 250 IBD patients were retrospectively analyzed for iron deficiency and iron deficiency anemia. A subgroup was analyzed regarding efficacy and side effects of iron supplementation with ferric carboxymaltose. Results: In the cohort (n = 250), 54.4% of the patients had serum iron levels 60 mu g/dl, 61.6% had ferritin >100 ng/ml, and 90.7% reached Hb >12/13 g/dl at follow-up (p < 0.0001 for all parameters vs. pretreatment values). The most frequent adverse event was a transient increase of liver enzymes with male gender as risk factor (p = 0.008, OR 8.62, 95% CI 1.74-41.66). Conclusions: Iron deficiency and anemia are frequent in IBD patients. Treatment with ferric carboxymaltose is efficious, safe and well tolerated in iron-deficient IBD patients. Copyright (C) 2011 S. Karger AG, Base
The communication of a secondary care diagnosis of autoimmune hepatitis to primary care practitioners: a population-based study
Background
Autoimmune Hepatitis is a chronic liver disease which affects young people and can result in liver failure leading to death or transplantation yet there is a lack of information on the incidence and prevalence of this disease and its natural history in the UK. A means of obtaining this information is via the use of clinical databases formed of electronic primary care records. How reliably the diagnosis is coded in such records is however unknown. The aim of this study therefore was to assess the proportion of consultant hepatologist diagnoses of Autoimmune Hepatitis which were accurately recorded in General Practice computerised records.
Methods
Our study population were patients with Autoimmune Hepatitis diagnosed by consultant hepatologists in the Queens Medical Centre, Nottingham University Hospitals (UK) between 2004 and 2009. We wrote to the general practitioners of these patients to obtain the percentage of patients who had a valid READ code specific for Autoimmune Hepatitis.
Results
We examined the electronic records of 51 patients who had biopsy evidence and a possible diagnosis of Autoimmune Hepatitis. Forty two of these patients had a confirmed clinical diagnosis of Autoimmune Hepatitis by a consultant hepatologist: we contacted the General Practitioners of these patients obtaining a response rate of 90.5% (39/42 GPs). 37/39 of these GPs responded with coding information and 89% of these patients (33/37) used Read code J638.00 (Autoimmune Hepatitis) to record a diagnosis.
Conclusions
The diagnosis of Autoimmune Hepatitis made by a Consultant Hepatologist is accurately communicated to and electronically recorded by primary care in the UK. As a large proportion of cases of Autoimmune Hepatitis are recorded in primary care, this minimises the risk of introducing selection bias and therefore selecting cases using these data will be a valid method of conducting population based studies on Autoimmune Hepatitis
Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes
Protein-DNA complexes with loops play a fundamental role in a wide variety of
cellular processes, ranging from the regulation of DNA transcription to
telomere maintenance. As ubiquitous as they are, their precise in vivo
properties and their integration into the cellular function still remain
largely unexplored. Here, we present a multilevel approach that efficiently
connects in both directions molecular properties with cell physiology and use
it to characterize the molecular properties of the looped DNA-lac repressor
complex while functioning in vivo. The properties we uncover include the
presence of two representative conformations of the complex, the stabilization
of one conformation by DNA architectural proteins, and precise values of the
underlying twisting elastic constants and bending free energies. Incorporation
of all this molecular information into gene-regulation models reveals an
unprecedented versatility of looped DNA-protein complexes at shaping the
properties of gene expression.Comment: Open Access article available at
http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
- …
