579 research outputs found

    Epigenetics and chromatin remodeling play a role in lung disease

    Get PDF
    Epigenetics is defined as heritable changes that affect gene expression without altering the DNA sequence. Epigenetic regulation of gene expression is facilitated through different mechanisms such as DNA methylation, histone modifications and RNA-associated silencing by small non-coding RNAs. All these mechanisms are crucial for normal development, differentiation and tissue-specific gene expression. These three systems interact and stabilize one another and can initiate and sustain epigenetic silencing, thus determining heritable changes in gene expression. Histone acetylation regulates diverse cellular functions including inflammatory gene expression, DNA repair and cell proliferation. Transcriptional coactivators possess intrinsic histone acetyltransferase activity and this activity drives inflammatory gene expression. Eleven classical histone deacetylases (HDACs) act to regulate the expression of distinct subsets of inflammatory/immune genes. Thus, loss of HDAC activity or the presence of HDAC inhibitors can further enhance inflammatory gene expression by producing a gene-specific change in HAT activity. For example, HDAC2 expression and activity are reduced in lung macrophages, biopsy specimens, and blood cells from patients with severe asthma and smoking asthmatics, as well as in patients with chronic obstructive pulmonary disease (COPD). This may account, at least in part, for the enhanced inflammation and reduced steroid responsiveness seen in these patients. Other proteins, particularly transcription factors, are also acetylated and are targets for deacetylation by HDACs and sirtuins, a related family of 7 predominantly protein deacetylases. Thus the acetylation/deacetylation status of NF-κB and the glucocorticoid receptor can also affect the overall expression pattern of inflammatory genes and regulate the inflammatory response. Understanding and targeting specific enzymes involved in this process might lead to new therapeutic agents, particularly in situations in which current anti-inflammatory therapies are suboptimal

    Exosomes and Exosomal miRNA in Respiratory Diseases

    Get PDF
    Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases

    Reduced Phagocytic Capacity of Blood Monocyte/Macrophages in Tuberculosis Patients Is Further Reduced by Smoking.

    Get PDF
    Tuberculosis (TB) and tobacco use are two major alarming global health issues posing immense threats to human populations. Mycobacterium tuberculosis (MTB) by activation of macrophages could induce the sequences of cells activation and releases of inflammatory cytokines such as CXCL-8, Il-12 and TNF-α which in turn induces the immune system network. However no information is available on other activity of cells by MTB and smoking. In the current study we aimed to investigate the serum levels TNF-a, CXCL-8 and phagocytosis capacity in tuberculosis patients with and without smoking. 103 subjects entered the study including 61 new diagnosed pulmonary TB patients (23 smokers and 38 nonsmokers) and 42 control healthy subjects. The phagocytosis of fluorescein isothiocyanate dextran (FITC-dextran) in blood monocytes/macrophages through flowcytometry was assessed. Serum levels of TNF-a and CXCL-8 were analyzed by ELISA methods. A lower percentage of cells from TB patients who smoked [50.29% (43.4-57.2), p<0.01] took up FITC-dextran after 2h compared to non-smoking TB subjects [71.62% (69.2-74.1)] and healthy cases [97.45% (95.9-99.1). Phagocytic capacity was inversely correlated with cigarette smoking as measured by pack years (r=-0.73, p<0.001). The serum levels of TNF-a and CXCL-8 were significantly higher in the TB patients who smoked compared to the TB non-smoker group (p<0.001, p<0.01 respectively). Blood monocytes/macrophages from TB patients have reduced phagocytic capacity which is further reduced in TB patients who smoke. Smoking enhanced serum levels of TNF-a and CXCL-8 suggesting a greater imbalance between the proinflammatory and anti-inflammatory factors in these patients

    Concomitant patterns of tuberculosis and sarcoidosis

    Get PDF

    Association between vitamin d deficiencies in sarcoidosis with disease activity, course of disease and stages of lung involvements

    Get PDF
    Background: Despite negative association between 25-hydroxy vitamin D and incidence of many chronic respiratory diseases, this feature was not well studied in sarcoidosis. Current study investigated the association between 25-hydroxy vitamin D deficiency with sarcoidosis chronicity, disease activity, extra-pulmonary skin manifestations, urine calcium level and pulmonary function status in Iranian sarcoidosis patients. Results of this study along with future studies, will supply more effective programs for sarcoidosis treatment. Methods: Eighty sarcoidosis patients in two groups of insufficient serum level and sufficient serum level of 25-hydroxy vitamin D were studied. Course of sarcoidosis was defined as acute and chronic sarcoidosis. Pulmonary function test (PFT) was assessed by spirometry. Skin involvements were defined as biopsy proven skin sarcoidosis. 24-hour urine calcium level was used to specify the disease activity. Stages of lung involvements were obtained by CT-scan and chest X-ray. The statistical analyses were evaluated using Statistical Package for the Social Sciences. Results: A significant negative correlation was obtained between vitamin D deficiency in sarcoidosis patients and disease chronic course and stages two to four of lung involvements. Considering other parameters of the disease and vitamin D deficiency, no significant correlation was detected. Conclusions: In conclusion, results of the current study implies in the role of vitamin 25(OH)D deficiencies in predicting the course of chronic sarcoidosis. Furthermore, it was concluded that vitamin 25(OH)D deficiency can direct pulmonary sarcoidosis toward stage 2–4 of lung involvements

    Bromodomain and extra-terminal protein mimic JQ1 decreases inflammation in human vascular endothelial cells: Implications for pulmonary arterial hypertension

    Get PDF
    Background and objective Nuclear factor kappa B (NF-kB)-mediated inflammatory gene expression and vascular endothelial cell proliferation/remodelling are implicated in the pathophysiology of the fatal disease, pulmonary arterial hypertension (PAH). Bromodomain and extra-terminal (BET) proteins are essential for the expression of a subset of NF-kB-induced inflammatory genes. BET mimics including JQ1+ prevent binding of BETs to acetylated histones and down-regulate the expression of selected genes. Methods The effects of JQ1+ on the proliferation of primary human pulmonary microvascular endothelial cells (HPMECs) from healthy subjects were measured by bromodeoxyuridine (BrdU) incorporation. Cell cycle progression was assessed by flow cytometry; mRNA and protein levels of cyclin-dependent kinases (CDKs), inhibitors and cytokines were determined by reverse transcription-quantitative PCR (RT-qPCR), Western blotting or ELISA. Histone acetyltransferase (HAT) and deacetylase (HDAC) activities were determined in nuclear extracts from whole lung of PAH and control patients. Results JQ1+ significantly inhibited IL6 and IL8 (IL6 and CXCL8) mRNA and protein in HPMECs compared with its inactive enantiomer JQ1−. JQ1+ decreased NF-kB p65 recruitment to native IL6 and IL8 promoters. JQ1+ showed a concentration-dependent decrease in HPMEC proliferation compared with JQ1−-treated cells. JQ1+ induced G1 cell cycle arrest by increasing the expression of the CDK inhibitors (CDKN) 1A (p21cip) and CDKN2D (p19INK4D ) and decreasing that of CDK2, CDK4 and CDK6. JQ1+ also inhibited serum-stimulated migration of HPMECs. Finally, HAT activity was significantly increased in the lung of PAH patients. Conclusion Inhibition of BETs in primary HPMECs decreases inflammation and remodelling. BET proteins could be a target for future therapies for PAH
    corecore