857 research outputs found
Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma
Currently, considerable resurgent interest exists in the concept of
superradiance (SR), i.e., accelerated relaxation of excited dipoles due to
cooperative spontaneous emission, first proposed by Dicke in 1954. Recent
authors have discussed SR in diverse contexts, including cavity quantum
electrodynamics, quantum phase transitions, and plasmonics. At the heart of
these various experiments lies the coherent coupling of constituent particles
to each other via their radiation field that cooperatively governs the dynamics
of the whole system. In the most exciting form of SR, called superfluorescence
(SF), macroscopic coherence spontaneously builds up out of an initially
incoherent ensemble of excited dipoles and then decays abruptly. Here, we
demonstrate the emergence of this photon-mediated, cooperative, many-body state
in a very unlikely system: an ultradense electron-hole plasma in a
semiconductor. We observe intense, delayed pulses, or bursts, of coherent
radiation from highly photo-excited semiconductor quantum wells with a
concomitant sudden decrease in population from total inversion to zero. Unlike
previously reported SF in atomic and molecular systems that occur on nanosecond
time scales, these intense SF bursts have picosecond pulse-widths and are
delayed in time by tens of picoseconds with respect to the excitation pulse.
They appear only at sufficiently high excitation powers and magnetic fields and
sufficiently low temperatures - where various interactions causing decoherence
are suppressed. We present theoretical simulations based on the relaxation and
recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing
magnetic field, which successfully capture the salient features of the
experimental observations.Comment: 21 pages, 4 figure
Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease. Although an increasing number of genetic factors have been connected to this debilitating condition, the proportion of cases that can be attributed to distinct genetic defects is unknown. To provide a comprehensive analysis of the frequency and spectrum of pathogenic missense mutations and coding risk variants in nine genes previously implicated in DLB, we performed exome sequencing in 111 pathologically confirmed DLB patients. All patients were Caucasian individuals from North America. Allele frequencies of identified missense mutations were compared to 222 control exomes. Remarkably, ~ 25% of cases were found to carry a pathogenic mutation or risk variant in APP, GBA or PSEN1, highlighting that genetic defects play a central role in the pathogenesis of this common neurodegenerative disorder. In total, 13% of our cohort carried a pathogenic mutation in GBA, 10% of cases carried a risk variant or mutation in PSEN1, and 2% were found to carry an APP mutation. The APOE ε4 risk allele was significantly overrepresented in DLB patients (p-value < 0.001). Our results conclusively show that mutations in GBA, PSEN1, and APP are common in DLB and consideration should be given to offer genetic testing to patients diagnosed with Lewy body dementia
Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle
Background
Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals.
Results
Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle.
Conclusions
This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought
Predicting Breast Cancer Response to Neoadjuvant Chemotherapy Using Pretreatment Diffuse Optical Spectroscopic-Texture Analysis
Purpose: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pre-treatment DOS functional maps for predicting LABC response to NAC. Methods: LABC patients (n = 37) underwent DOS-breast imaging before starting neoadjuvant chemotherapy. Breast-tissue parametric maps were constructed and texture analyses were performed based on grey level co-occurrence matrices (GLCM) for feature extraction. Ground-truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS-textural features computed on volumetric tumour data before the start of treatment (i.e. “pre-treatment”) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naïve Bayes, and k-nearest neighbour (k-NN) classifiers.
Results: Data indicated that textural characteristics of pre-treatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2-homogeneity resulted in the highest accuracy amongst univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5 and 89.0%, respectively and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-Contrast + HbO2-Homogeneity which resulted in a %Sn/%Sp = 78.0/81.0% and an accuracy of 79.5%.
Conclusions: This study demonstrated that pre-treatment tumour DOS-texture features can predict breast cancer response to NAC and potentially guide treatments
Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels
Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large
LCA applied to perennial cropping systems: a review focused on the farm stage
International audienc
Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine.
A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte-neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine
Varieties of living things: Life at the intersection of lineage and metabolism
publication-status: Publishedtypes: Articl
A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus
The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food
sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies.
M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have
diversified into many distinct compatibility types that are distinguished by the failure of swarming
colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population
belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace
patterns of incipient genomic divergence, specifically related to social divergence. Although
homologous recombination occurs frequently within the two MLST clades, we find an almost
complete absence of recombination events between them. As the two clades are very closely related
and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between
them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid
substitution in the core genome. We identify a large genomic tract that consistently differs between
isolates that do not freely merge and therefore is a candidate region for harbouring gene(s)
responsible for self/non-self discrimination
- …
