443 research outputs found
A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal
Transition from vortex to wall driven turbulence production in the Taylor-Couette system with a rotating inner cylinder
Government support to regional food producers: an assessment of England's Regional Food Strategy
The rationale for, and impact of, government support to regional food producers is investigated through a case study of England’s Regional Food Strategy (RFS). The headline target for the RFS is to increase the turnover of the quality regional food sector by 25% over a five-year period. The RFS also seeks to propagate wider benefits such as local economic development and aiding farms to shift to more environmentally friendly methods. The analysis indicates that the headline target is likely to be met comfortably. Producers that have received support under the RFS have performed better than nonbeneficiaries and positive assessments of the business training and advice received are recorded. However, the purported linkages with wider benefits are difficult to establish. Trade-offs between the competitiveness agenda of stimulating growth and meeting some wider policy goals are apparent
Energy policy under austerity localism: what role for local authorities?
In the UK, local authorities (LAs) have been placed at the forefront of domestic energy-reduction strategies as the responsible actors for coordinating policy in this sector. Yet, there has been little research regarding the role of LAs in this policy agenda, and their abilities to bring together stakeholders in the successful design and implementation of strategies to reduce energy demands. The paper aims to fill this gap by highlighting the relevance and importance of the energy policy sphere to local government studies, building on the idea of resilient LAs within the context of tensions between the localism agenda and the actual implementation of energy efficiency polices. This is achieved through multiple rounds of semi-structured interviews with LA officers. Our findings reveal that LAs, operating under a localism agenda, lack the freedoms and resources from central government to meet the needs of multiple stakeholders, resorting to short-term policies
Exploring the dilemma of local sourcing versus international development – the case of the flower industry
AbstractThis paper examines the debate surrounding local versus international sourcing of retail products, particularly food and flowers, in light of the emerging carbon imperative. It begins by examining the Fairtrade market and then examines ‘food miles’ and carbon impact. The complexity of sourcing decisions when considering both international development issues and the emerging carbon agenda is considered using the case of the cut flower industry. Copyright © 2008 John Wiley & Sons, Ltd and ERP Environment.</jats:p
Life cycle assessment of the Seagen marine current turbine
The world's first commercial‐scale grid‐connected tidal current energy installation will feature the Seagen marine current turbine developed by Marine Current Turbines Ltd. With potential for the manufacture of significant numbers of such devices there is a need to assess their environmental impact and, in particular, their life cycle energy and carbon dioxide (CO2) performance. This paper presents an analysis of the life cycle energy use and CO2 emissions associated with the first generation of Seagen turbines. The detailed assessment covers the embodied energy and CO2 in the materials and manufacturing of components, device installation, and operation along with those for decommissioning. With relatively conservative assumptions, and despite the early stage of development, the study shows that at 214 kJ/kWh and 15 g CO2/kWh, the respective energy and carbon intensities are comparable with large wind turbines and very low relative to the 400 to 1000 g CO2/kWh typical of fossil‐fuelled generation. The energy payback period is approximately 14 months and the CO2 payback is around 8 months. The embodied energy and carbon show limited sensitivity to assumptions with environmental performance remains excellent even under the most adverse scenarios considered. Materials use is identified as the primary contributors to embodied energy and carbon with shipping also significant. Improvements in the environmental impact of the Seagen can be achieved primarily by increased structural efficiency and the use of alternative installation methods to increase recovery of steel at decommissioning
Energy and carbon audit of a rooftop wind turbine
Abstract: Microgeneration is being promoted as a means of lowering carbon dioxide (CO2) emissions by replacing electricity from the grid with production from small domestic genera-tors. One concern over this drive is that the use of smaller plant could lead to the loss of econ-omies of scale. Partly, this relates to cost but also in terms of energy consumed and CO2 emitted over the life cycle of the microgenerator. Here, an analysis is presented of a life-cycle audit of the energy use and CO2 emissions for the ‘SWIFT’, a 1.5 kW rooftop-mounted, grid-connected wind turbine. The analysis shows that per kilowatt-hour of electricity generated by the turbine, the energy intensity and CO2 emissions are comparable with larger wind turbines and significantly lower than fossil-fuelled generation. With energy and carbon intensities sensitive to assumed levels of production, assessments were carried out for an annual production range of 1000–4000 kWh, representing capacity factors of 8–31 per cent. For the manufacturer’s estimated production of 2000 to 3000 kWh and, giving credit for component recycling, the energy payback period was found to be between 17 and 25 months, whereas the CO2 payback was between 13 and 20 months. Across the full production range, the energy and carbon payback periods were 13–50 months and 10–39 months, respectively. A key outcome of the study is to inform the manufacturer of the opportunities for improving the energy and carbon intensities of the turbine. A simple example is presented showing the impact of replacing one of the larger aluminium components with alternative materials
Ancillary human health benefits of improved air quality resulting from climate change mitigation
<p>Abstract</p> <p>Background</p> <p>Greenhouse gas (GHG) mitigation policies can provide ancillary benefits in terms of short-term improvements in air quality and associated health benefits. Several studies have analyzed the ancillary impacts of GHG policies for a variety of locations, pollutants, and policies. In this paper we review the existing evidence on ancillary health benefits relating to air pollution from various GHG strategies and provide a framework for such analysis.</p> <p>Methods</p> <p>We evaluate techniques used in different stages of such research for estimation of: (1) changes in air pollutant concentrations; (2) avoided adverse health endpoints; and (3) economic valuation of health consequences. The limitations and merits of various methods are examined. Finally, we conclude with recommendations for ancillary benefits analysis and related research gaps in the relevant disciplines.</p> <p>Results</p> <p>We found that to date most assessments have focused their analysis more heavily on one aspect of the framework (e.g., economic analysis). While a wide range of methods was applied to various policies and regions, results from multiple studies provide strong evidence that the short-term public health and economic benefits of ancillary benefits related to GHG mitigation strategies are substantial. Further, results of these analyses are likely to be underestimates because there are a number of important unquantified health and economic endpoints.</p> <p>Conclusion</p> <p>Remaining challenges include integrating the understanding of the relative toxicity of particulate matter by components or sources, developing better estimates of public health and environmental impacts on selected sub-populations, and devising new methods for evaluating heretofore unquantified and non-monetized benefits.</p
A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading
- …
