57 research outputs found

    A Self-Consistent Model for Positronium Formation from Helium Atoms

    Full text link
    The differential and total cross sections for electron capture by positrons from helium atoms are calculated using a first-order distorted wave theory satisfying the Coulomb boundary conditions. In this formalism a parametric potential is used to describe the electron screening in a consistent and realistic manner. The present procedure is self consistent because (i) it satisfies the correct boundary conditions and post-prior symmetry, and (ii) the potential and the electron binding energies appearing in the transition amplitude are consistent with the wave functions describing the collision system. The results are compared with the other theories and with the available experimental measurements. At the considered range of collision energies, the results agree reasonably well with recent experiments and theories. [Note: This paper will be published on volume 42 of the Brazilian Journal of Physics

    Cellulose pyrolysis and quantum chemistry

    No full text
    Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc

    Short-Term Responses of Some Planktonic Crustacea Exposed to Enhanced UV-B Radiation

    No full text

    A space oddity: Geographic and specific modulation of migration in Eudyptes penguins

    Get PDF
    Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual’s migration path, including such factors as the intrinsic influence of each locality’s paleoenvironment, thereby influencing animals’ wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World’s seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group

    Heavy Ion Stopping in Dense and Hot Matter

    No full text
    corecore