26 research outputs found

    Politics of nanotechnologies in food and agriculture

    Get PDF
    The chapter discusses the reasons for the delay in the regulatory intervention concerning nanotechnologies used in the agriculture and food sectors. The main finding is that unregulated introduction of nanoinnovation into the food system is due to the current neoliberal food policy and to the power struggles that characterize the economic, social and political dynamics within the global supply chain. Therefore, it is necessary to put the ‘question concerning technology’ at the center of the regulatory debate in order to implement a regulatory system able to face nanorisks. Which means looking at the way in which technology controls power relationships within society. Attention should be shifted from efficiency to power issues, and new technologies should be assessed from a political rather than an economic or ethical perspective

    Ex Vivo Expansion of Human CD8+ T Cells Using Autologous CD4+ T Cell Help

    Get PDF
    Background: Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model. Methods/Principal Findings: We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells. Conclusions: We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro

    Dezellularisierter xenogener Knorpel als innovative Bioimplantatmatrix

    No full text
    corecore