2,426 research outputs found
Rodent models of heart failure: an updated review
Heart failure (HF) is one of the major health and economic burdens worldwide, and its prevalence is continuously increasing. The study of HF requires reliable animal models to study the chronic changes and pharmacologic interventions in myocardial structure and function and to follow its progression toward HF. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and find more efficient ways of preventing and managing patients suffering from congestive HF (CHF). Each species and each animal model has advantages and disadvantages, and the choice of one model over another should take them into account for a good experimental design. The aim of this review is to describe and highlight the advantages and drawbacks of some commonly used HF rodents models, including both non-genetically and genetically engineered models, with a specific subchapter concerning diastolic HF models
Influence of P53 on the radiotherapy response of hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines
Infective Endocarditis Complicated by Large Aortic Pseudoaneurysm after Cardiac Surgery
A 66-year-old female with Streptococcus viridans aortic and tricuspid infective endocarditis develops, during the course of antibiotic therapy, rupture of a right coronary sinus of Valsalva aneurysm to the right ventricle. An urgent cardiac surgery is preformed with implantation of a mechanical aortic prosthesis and a right coronary sinus plasty. Six months later a huge aortic pseudoaneurysm is diagnosed and she is submitted to a second uneventful surgery. A review is done for the significant features with discussion of diagnosis and therapy
Development of a LAMP assay for detection of Leishmania infantum infection in dogs using conjunctival swab samples
Background: Leishmania infantum infections in dogs play a crucial role in the transmission of pathogens causing visceral leishmaniasis to humans in the Gansu province, northwest China. To be able to control zoonotic transmission of the parasite to humans, a non-invasive loop-mediated isothermal amplification (LAMP) assay to specifically detect L. infantum infections in dogs was developed. Methods: The primers used in the LAMP assay were designed to target kinetoplast DNA minicircle sequences of the L. infantum isolate MCAN/CN/90/SC and tested using DNA isolated from promastigotes of different Leishmania species. The LAMP assay was evaluated with conjunctional swab samples obtained from 111 and 33 dogs living in an endemic and a non-endemic region of zoonotic visceral leishmaniasis in the Gansu province, respectively. The LAMP assay was also compared with conventional PCR, ELISA and microscopy using conjunctional swab, serum and bone marrow samples from the dogs, respectively. Results: The LAMP assay detected 1 fg of L. infantum DNA purified from cultured promastigotes which was 10-fold more sensitive than a conventional PCR test using Leishmania genus-specific primers. No cross reaction was observed with DNA isolated from promastigotes of L. donovani, L. major, L. tropica, and L. braziliensis, and the L. infantum reference strain MHOM/TN/80/IPT1. The L. infantum-positive rates obtained for field-collected samples were 61.3%, 58.6%, 40.5% and 10.8% by LAMP, PCR, ELISA and microscopy, respectively. As only one out of the 33 samples from control dogs from the non-endemic region of zoonotic visceral leishmaniasis was positive by the LAMP assay and the PCR test, the observed true negative rate (specificity) was 97% for both methods. Conclusion: This study has shown that the non-invasive, conjunctional swab-based LAMP assay developed was more sensitive in the detection of leishmaniasis in dogs than PCR, ELISA and microscopy. The findings indicate that the LAMP assay is a sensitive and specific method for the field surveillance of domestic dogs, particularly of asymptomatic canines, in ZVL-endemic areas in western China
Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer
Here we study the evolution of local electronic properties of a twisted
graphene bilayer induced by a strain and a high curvature. The strain and
curvature strongly affect the local band structures of the twisted graphene
bilayer; the energy difference of the two low-energy van Hove singularities
decreases with increasing the lattice deformations and the states condensed
into well-defined pseudo-Landau levels, which mimic the quantization of massive
Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle.
The joint effect of strain and out-of-plane distortion in the graphene wrinkle
also results in a valley polarization with a significant gap, i.e., the
eight-fold degenerate Landau level at the charge neutrality point is splitted
into two four-fold degenerate quartets polarized on each layer. These results
suggest that strained graphene bilayer could be an ideal platform to realize
the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure
Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition
The competition between superconductivity and localization raises profound
questions in condensed matter physics. In spite of decades of research, the
mechanism of the superconductor-insulator transition (SIT) and the nature of
the insulator are not understood. We use quantum Monte Carlo simulations that
treat, on an equal footing, inhomogeneous amplitude variations and phase
fluctuations, a major advance over previous theories. We gain new microscopic
insights and make testable predictions for local spectroscopic probes. The
energy gap in the density of states survives across the transition, but
coherence peaks exist only in the superconductor. A characteristic pseudogap
persists above the critical disorder and critical temperature, in contrast to
conventional theories. Surprisingly, the insulator has a two-particle gap scale
that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures
Using the Juvenile Arthritis Disease Activity Score based on erythrocyte sedimentation rate or C-reactive protein level: results from the Portuguese register
Our aims were to evaluate the correlation between Juvenile Arthritis Disease Activity Score 27-joint reduced count (JADAS27) with erythrocyte sedimentation rate (ESR) and JADAS27 with C-reactive protein (CRP) scores and to test the agreement of both scores on classifying each disease activity state. We also aimed at verifying the correlation of the 2 scores across juvenile idiopathic arthritis (JIA) categories and to check the correlation between JADAS27-ESR and clinical JADAS27 (JADAS27 without ESR)
Advances in Food Allergy Diagnosis
An accurate diagnosis of food allergy is extremely important to guide safe and yet not overly restrictive dietary management. The cornerstone of the diagnosis of food allergy is the clinical history; it allows appropriate selection of the allergens to be tested and interpretation of the results of allergy tests, namely Skin Prick Test (SPT), Specific IgE (sIgE) to allergen extracts and, more recently, specific IgE to allergen components and the Basophil Activation Test (BAT). SPT and sIgE to allergen extracts are very sensitive methods to detect IgE sensitization to a specific food and assess the possibility of spontaneous resolution. Cut-offs have been generated based on the probability of clinical reactivity during oral food challenges and can improve the specificity of SPT and sIgE, helping to confirm the diagnosis of food allergy. Specific IgE to allergen components refines food allergy diagnosis as it allows differentiating species-specific from cross-reactive allergens, aiding the differential diagnosis between a true and potentially severe food allergy from pollen-food syndrome or clinically irrelevant sensitization. The BAT is a new diagnostic test which has high specificity and sensitivity and can complement specific IgE, allowing the deferral of OFC in patients with a positive BAT. Depending on the likelihood of clinical allergy determined based on the combination of the history and the results of allergy tests, an oral food challenge may be indicated to confirm or exclude the diagnosis. Oral food challenge is the gold standard for the diagnosis of food allergy, but is a resource-intensive procedure with some level of risk involved; thus they are reserved for the equivocal cases. This review article discusses the above diagnostic techniques detailing the methods, utility, advantages and disadvantages.info:eu-repo/semantics/publishedVersio
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
