1,201 research outputs found
Gold, power, protest: Digital and social media and protests against large-scale mining projects in Colombia
Colombia’s Internet connectivity has increased immensely. Colombia has also ‘opened for business’, leading to an influx of extractive projects to which social movements object heavily. Studies on the role of digital media in political mobilisation in developing countries are still scarce. Using surveys, interviews, and reviews of literature, policy papers, website and social media content, this study examines the role of digital and social media in social movement organisations and asks how increased digital connectivity can help spread knowledge and mobilise mining protests. Results show that the use of new media in Colombia is hindered by socioeconomic constraints, fear of oppression, the constraints of keyboard activism and strong hierarchical power structures within social movements. Hence, effects on political mobilisation are still limited. Social media do not spontaneously produce non-hierarchical knowledge structures. Attention to both internal and external knowledge sharing is therefore conditional to optimising digital and social media use
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children
Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system.
The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals--the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with Im3m symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H-S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the Im3m phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S.We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (FIS2013- 48286-C2-2-P), French Agence Nationale de la Recherche (Grant No. ANR-13-IS10-0003- 392 01), EPSRC (UK) (Grant No. EP/J017639/1), Cambridge Commonwealth Trust, National Natural Science Foundation of China (Grants No. 11204111, 11404148, and 11274136), and 2012 Changjiang Scholars Program of China. Work at Carnegie was supported by EFree, an Energy Frontier Research Center funded by the DOE, Office of Science, Basic Energy Sciences under Award No. DE-SC-0001057. Computer facilities were provided by the PRACE project AESFT and the Donostia International Physics Center (DIPC).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1717
Recommended from our members
Parental experiences of supporting children with clinically significant post-traumatic distress: a qualitative study of families accessing psychological services
The aim of this study was to investigate the experiences of parents in providing support to their child following trauma exposure in cases where children are experiencing clinically significant levels of post-traumatic distress. Qualitative interviews were conducted with parents whose child was exposed to a trauma and referred for psychological treatment. Parents reported considerable anxiety in coping with their child’s post-traumatic distress. Avoidance of trauma-related discussions was encouraged due to concerns that non-avoidant approaches may worsen children’s post-trauma difficulties. Nonetheless, parents were often sensitive to their child’s distress and offered reassurance and other forms of support. Many barriers existed to accessing psychological treatment, and perceptions of inadequate guidance from therapists on supporting child adjustment contributed to parental distress. The results illustrate the strategies used by parents in supporting their child post-trauma and may assist mental health professionals in providing acceptable guidance to parents following child trauma
Prediction of leak flow rate in plastic water distribution pipes using vibro-acoustic measurements
Leakage from water distribution systems is a worldwide issue with consequences including loss of revenue, health and environmental concerns. Leaks have typically been found through leak noise correlation by placing sensors either side of the leak and recording and analysing its vibro-acoustic emission. While this method is widely used to identify the location of the leak, the sensors also record data that could be related to the leak’s flow rate, yet no reliable method exists to predict leak flow rate in water distribution pipes using vibro-acoustic emission. The aim of this research is to predict leak flow rate in medium-density polyethylene pipe using vibro-acoustic emission signals. A novel experimental methodology is presented whereby circular holes of four sizes are tested at several leak flow rates. Following the derivation of a number of features, least squares support vector machines are used in order to predict leak flow rate. The results show a strong correlation highlighting the potential of this technique as a rapid and practical tool for water companies to assess and prioritise leak repair
The Evolution of Religion: How Cognitive By-Products, Adaptive Learning Heuristics, Ritual Displays, and Group Competition Generate Deep Commitments to Prosocial Religio
Understanding religion requires explaining why supernatural beliefs, devotions, and rituals are both universal and variable across cultures, and why religion is so often associated with both large-scale cooperation and enduring group conflict. Emerging lines of research suggest that these oppositions result from the convergence of three processes. First, the interaction of certain reliably developing cognitive processes, such as our ability to infer the presence of intentional agents, favors—as an evolutionary by-product—the spread of certain kinds of counterintuitive concepts. Second, participation in rituals and devotions involving costly displays exploits various aspects of our evolved psychology to deepen people's commitment to both supernatural agents and religious communities. Third, competition among societies and organizations with different faith-based beliefs and practices has increasingly connected religion with both within-group prosociality and between-group enmity. This connection has strengthened dramatically in recent millennia, as part of the evolution of complex societies, and is important to understanding cooperation and conflict in today's world
Circuit quantum acoustodynamics with surface acoustic waves
The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 105 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices
- …
