501 research outputs found

    Knots and Particles

    Get PDF
    Using methods of high performance computing, we have found indications that knotlike structures appear as stable finite energy solitons in a realistic 3+1 dimensional model. We have explicitly simulated the unknot and trefoil configurations, and our results suggest that all torus knots appear as solitons. Our observations open new theoretical possibilities in scenarios where stringlike structures appear, including physics of fundamental interactions and early universe cosmology. In nematic liquid crystals and 3He superfluids such knotted solitons might actually be observed.Comment: 9 pages, 4 color eps figures and one b/w because of size limit (color version available from authors

    The BDNF Val66Met polymorphism moderates the relationship between cognitive reserve and executive function

    Get PDF
    The concept of cognitive reserve (CR) has been proposed to account for observed discrepancies between pathology and its clinical manifestation due to underlying differences in brain structure and function. In 433 healthy older adults participating in the Tasmanian Healthy Brain Project, we investigated whether common polymorphic variations in apolipoprotein E (APOE) or brain-derived neurotrophic factor (BDNF) influenced the association between CR contributors and cognitive function in older adults. We show that BDNF Val66Met moderates the association between CR and executive function. CR accounted for 8.5% of the variance in executive function in BDNF Val homozygotes, but CR was a nonsignificant predictor in BDNF Met carriers. APOE polymorphisms were not linked to the influence of CR on cognitive function. This result implicates BDNF in having an important role in capacity for building or accessing CR

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    A Search for Dark Higgs Bosons

    Get PDF
    Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb-1 of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the Standard Model-dark sector mixing angle and the dark sector coupling constant.Comment: 7 pages, 5 postscript figures, published version with improved plots for b/w printin

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    The clinical and functional significance of c-Met in breast cancer: a review

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.CMH-Y is funded by a Cancer Research UK Clinical Research Fellowship. JLJ is funded by the Breast Cancer Campaign Tissue Bank

    An experimental and numerical investigation of chevron fin structures in serpentine minichannel heat sinks

    Get PDF
    Water-cooled micro/minichannel heat sinks are an important component in managing the temperature of electronic components, particularly where high density of heat rejection is required. This study examines the potential to decrease the thermal resistance and enhance convective heat transfer of a serpentine heat exchanger, by introducing chevron fins which create secondary flow paths. This novel design is found to significantly reduce both the pressure drop across the heat exchanger and the total thermal resistance by up to 60% and 10%, respectively, and enhance the average Nusselt number by 15%. A three-dimensional conjugate heat transfer model is developed and validated against experimental measurements, before being used to carry out a parametric study involving the chevron oblique angle, secondary channel width and heat flux. The design of the serpentine minichannel with chevron fins is then optimised in terms of the minichannel width, minichannel number and chevron oblique angle. A 50 point Optimal Latin Hypercubes (OLHC) Design of Experiment (DoE) is constructed within the design variable space, using a permutation genetic algorithm, and accurate metamodels built using a Radial Basis Function (RBF) approach. A Pareto front is constructed which enables designers to explore appropriate compromises between designs with low pressure drop and those with low thermal resistance

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe
    corecore