2,422 research outputs found

    Concurrency testing using schedule bounding: an empirical study

    No full text

    Uncovering Bugs in Distributed Storage Systems during Testing (not in Production!)

    Get PDF
    Testing distributed systems is challenging due to multiple sources of nondeterminism. Conventional testing techniques, such as unit, integration and stress testing, are ineffective in preventing serious but subtle bugs from reaching production. Formal techniques, such as TLA+, can only verify high-level specifications of systems at the level of logic-based models, and fall short of checking the actual executable code. In this paper, we present a new methodology for testing distributed systems. Our approach applies advanced systematic testing techniques to thoroughly check that the executable code adheres to its high-level specifications, which significantly improves coverage of important system behaviors. Our methodology has been applied to three distributed storage systems in the Microsoft Azure cloud computing platform. In the process, numerous bugs were identified, reproduced, confirmed and fixed. These bugs required a subtle combination of concurrency and failures, making them extremely difficult to find with conventional testing techniques. An important advantage of our approach is that a bug is uncovered in a small setting and witnessed by a full system trace, which dramatically increases the productivity of debugging

    The design and implementation of a verification technique for GPU Kernels

    Get PDF
    We present a technique for the formal verification of GPU kernels, addressing two classes of correctness properties: data races and barrier divergence. Our approach is founded on a novel formal operational semantics for GPU kernels termed synchronous, delayed visibility (SDV) semantics, which captures the execution of a GPU kernel by multiple groups of threads. The SDV semantics provides operational definitions for barrier divergence and for both inter- and intra-group data races. We build on the semantics to develop a method for reducing the task of verifying a massively parallel GPU kernel to that of verifying a sequential program. This completely avoids the need to reason about thread interleavings, and allows existing techniques for sequential program verification to be leveraged. We describe an efficient encoding of data race detection and propose a method for automatically inferring the loop invariants that are required for verification. We have implemented these techniques as a practical verification tool, GPUVerify, that can be applied directly to OpenCL and CUDA source code. We evaluate GPUVerify with respect to a set of 162 kernels drawn from public and commercial sources. Our evaluation demonstrates that GPUVerify is capable of efficient, automatic verification of a large number of real-world kernels

    Scatter-limited conduction in printed platinum nanofilms

    Get PDF
    It is demonstrated that thin platinum films may be deposited onto smooth glass substrates using a materials printer and a propriety organometallic ink. Under opti- mised printing and subsequent thermal curing conditions, excellent film adhesion to the substrates was achieved for thicknesses of about 15 nm. The resistivity of the opti- mised films is observed to be a factor of less than 3 higher than pure bulk platinum at 300 K and exhibits a slightly smaller associated thermal coefficient of resistance. The resistivity parameters are found to be insensitive to the gaseous measurement environment which suggests that intercalated carbon regions within the films following the curing process have been largely eliminated. An analysis of the resistivity data indicates that electronic conduction is consistent with enhanced boundary scattering at granular structures that are introduced during multi-pass printing. A minimum electron mean free path of ~18 nm is deduced from the measured film topography. The presented work will find application in biosensor and fuel cell technologies.</p

    Knots and Particles

    Get PDF
    Using methods of high performance computing, we have found indications that knotlike structures appear as stable finite energy solitons in a realistic 3+1 dimensional model. We have explicitly simulated the unknot and trefoil configurations, and our results suggest that all torus knots appear as solitons. Our observations open new theoretical possibilities in scenarios where stringlike structures appear, including physics of fundamental interactions and early universe cosmology. In nematic liquid crystals and 3He superfluids such knotted solitons might actually be observed.Comment: 9 pages, 4 color eps figures and one b/w because of size limit (color version available from authors

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page
    corecore