24 research outputs found

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    ‘Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases.

    No full text
    In biology, rapid oxidation and evolution of H(2) is catalyzed by metalloenzymes known as hydrogenases. These enzymes have unusual active sites, consisting of iron complexed by carbonyl, cyanide, and thiolate ligands, often together with nickel, and are typically inhibited or irreversibly damaged by O(2). The Knallgas bacterium Ralstonia eutropha H16 (Re) uses H(2) as an energy source with O(2) as a terminal electron acceptor, and its membrane-bound uptake [NiFe]-hydrogenase (MBH) is an important example of an "O(2)-tolerant" hydrogenase. The mechanism of O(2) tolerance of Re MBH has been probed by measuring H(2) oxidation activity in the presence of O(2) over a range of potential, pH and temperature, and comparing with the same dependencies for individual processes involved in the attack by O(2) and subsequent reactivation of the active site. Most significantly, O(2) tolerance increases with increasing temperature and decreasing potentials. These trends correlate with the trends observed for reactivation kinetics but not for H(2) affinity or the kinetics of O(2) attack. Clearly, the rate of recovery is a crucial factor. We present a kinetic and thermodynamic model to account for O(2) tolerance in Re MBH that may be more widely applied to other [NiFe]-hydrogenases

    Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species.

    No full text
    Studies have been carried out to establish the ability of O2-tolerant membrane-bound [NiFe] hydrogenases (MBH) from Ralstonia sp. to catalyze H2 production in addition to H2 oxidation. These hydrogenases are not noted for H2-evolution activity, and this is partly due to strong product inhibition. However, when adsorbed on a rotating disk graphite electrode the enzymes produce H2 efficiently, provided the H2 product is continuously removed by rapidly rotating the electrode and flowing N2 through the gastight electrochemical cell. Electrocatalytic H2 production proceeds with minimal overpotentiala significant observation because lowering the overpotential (the electrochemically responsive activation barrier) is seen as crucial in developing small-molecule catalysts for H2 production. A mutant having a high KM for H2 oxidation did not prove to be a better H2 producer relative to the wild type, thus suggesting that weak binding of H2 does not itself confer a tendency to be a H2 producer. Inhibition by H2 is much stronger than inhibition by CO and, most significantly, even O2. Consequently, H2 can be produced sustainably in the presence of O2 as long as the H2 is removed continuously, thereby proving the feasibility for biological H2 production in air

    Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology.

    No full text
    This tutorial review describes studies of hydrogen production and oxidation by biological catalysts--metalloenzymes known as hydrogenases--attached to electrodes. It explains how the electrocatalytic properties of hydrogenases are studied using specialised electrochemical techniques and how the data are interpreted to allow assessments of catalytic rates and performance under different conditions, including the presence of O2, CO and H2S. It concludes by drawing some comparisons between the enzyme active sites and platinum catalysts and describing some novel proof-of-concept applications that demonstrate the high activities and selectivities of these 'alternative' catalysts for promoting H2 as a fuel

    Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation.

    Get PDF
    Formaldehyde-a rapid and reversible inhibitor of hydrogen evolution by [FeFe]-hydrogenases-binds with a strong potential dependence that is almost complementary to that of CO. Whereas exogenous CO binds tightly to the oxidized state known as H(ox) but very weakly to a state two electrons more reduced, formaldehyde interacts most strongly with the latter. Formaldehyde thus intercepts increasingly reduced states of the catalytic cycle, and density functional theory calculations support the proposal that it reacts with the H-cluster directly, most likely targeting an otherwise elusive and highly reactive Fe-hydrido (Fe-H) intermediate

    Detecting oxidative post-translational modifications in proteins

    No full text
    Oxidative stress induces various post-translational modifications (PTM); some are reversible in vivo via enzymatic catalysis. The present paper reviews specific procedures for the detection of oxidative PTM in proteins, most of them including electrophoresis. Main topics are carbonylated and glutathionylated proteins as well as modification of selected amino acids (Cys, Tyr, Met, Trp, Lys)
    corecore