16 research outputs found
De Novo assembly and transcriptome analysis of the mediterranean fruit fly ceratitis capitata early embryos
The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing geneticbased pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae
Workflow interruptions and mental workload in hospital pediatricians: an observational study
Effects of a case-based interactive e-learning course on knowledge and attitudes about patient safety: a quasi-experimental study with third-year medical students
BACKGROUND: Patient safety (PS) is influenced by a set of factors on various levels of the healthcare system. Therefore, a systems-level approach and systems thinking is required to understand and improve PS. The use of e-learning may help to develop a systems thinking approach in medical students, as case studies featuring audiovisual media can be used to visualize systemic relationships in organizations. The goal of this quasi-experimental study was to determine if an e-learning can be utilized to improve systems thinking, knowledge, and attitudes towards PS. METHODS: A quasi-experimental, longitudinal within- subjects design was employed. Participants were 321 third-year medical students who received online surveys before and after they participated in an e-learning course on PS. Primary outcome measures where levels of systems thinking and attitudes towards PS. Secondary outcome measures were the improvement of PS specific knowledge through the e-learning course. RESULTS: Levels of systems thinking showed significant improvement (58.72 vs. 61.27; p < .001) after the e-learning. Student’s attitudes towards patient safety improved in several dimensions: After the course, students rated the influence of fatigue on safety higher (6.23 vs. 6.42, p < .01), considered patient empowerment more important (5.16 vs. 5.93, p < .001) and realized more often that human error is inevitable (5.75 vs. 5.97, p < .05). Knowledge on PS improved from 36.27 % correct answers before to 76.45 % after the e-learning (p < .001). CONCLUSIONS: Our results suggest that e-learning can be used to teach PS. Attitudes towards PS improved on several dimensions. Furthermore, we were able to demonstrate that a specifically designed e-learning program can foster the development of conceptual frameworks such as systems thinking, which facilitates the understanding of complex socio-technical systems within healthcare organisations
The comparative study of five sex-determining proteins across insects unveils high rates of evolution at basal components of the sex determination cascade
Spatial factors of white-tailed deer herbivory assessment in the central Appalachian Mountains
Because moderate to over-abundant white-tailed deer (Odocoileus virginianus) herbivory impacts biodiversity and can alter community function, ecological benchmarks of herbivory impact are needed to assess deer impacts. We evaluated spatial patterns of deer herbivory and their relation to herbivory assessment by evaluating woody vegetation along 20 transects at each of 30 sites spread across a wide range of deer herd densities and vegetative condition throughout the biodiverse Appalachian Mountains of Virginia, USA. Surprisingly, herbivory patterns and the availability of woody forage generally were unchanged among physiographic regions and land use diversity classes. However, some relationships between browsing pattern and vegetation varied with scale. The total quantity of vegetation browsed on a given site and at the transect scale were related positively to the availability of forage, as the proportion of stems browsed decreased as stem density increased. However, this was only true when all stems were considered equally. When stem densities by species were weighted for deer preference, the proportion of stems browsed had no relationship or increased with stem density. Compared to the value from all transects sampled, on average, the mean of >= 3 transects within a site was within 0.1 of the browsing ratio and stem densities were within 0.5 stems m(-2). Our results suggest that one transect per square kilometer with a minimum of three transects may be sufficient for most browsing intensity survey requirements to assess herbivory impacts in the Appalachian region of Virginia. Still, inclusion of spatial factors to help partition variation of deer herbivory potentially may allow for improved precision and accuracy in the design of field herbivory impact assessment methods and improve their application across various landscape contexts.U.S. Fish and Wildlife Service through the Wildlife and Sport Fish Restoration Program [WE99]; Virginia Department of Game and Inland FisheriesWe thank the Virginia Department of Game and Inland Fisheries for sponsoring this project using funds provided from the U.S. Fish and Wildlife Service through the Wildlife and Sport Fish Restoration Program, project WE99. Specifically we thank N. Lafon, M. Knox, J. Bowman, and D. Steffen for their comments and support. We also thank J. Parkhurst and M. Cherry for their comments on this manuscript and C. Parker for his help with field data collection.Public domain – authored by a U.S. government employe
