418 research outputs found
Tracer Flux Balance at an Urban Canyon Intersection
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277–296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas
Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}
Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
The mitochondrial genome of Angiostrongylus mackerrasae as a basis for molecular, epidemiological and population genetic studies
BACKGROUND: Angiostrongylus mackerrasae is a metastrongyloid nematode endemic to Australia, where it infects the native bush rat, Rattus fuscipes. This lungworm has an identical life cycle to that of Angiostrongylus cantonensis, a leading cause of eosinophilic meningitis in humans. The ability of A. mackerrasae to infect non-rodent hosts, specifically the black flying fox, raises concerns as to its zoonotic potential. To date, data on the taxonomy, epidemiology and population genetics of A. mackerrasae are unknown. Here, we describe the mitochondrial (mt) genome of A. mackerrasae with the aim of starting to address these knowledge gaps. METHODS: The complete mitochondrial (mt) genome of A. mackerrasae was amplified from a single morphologically identified adult worm, by long-PCR in two overlapping amplicons (8 kb and 10 kb). The amplicons were sequenced using the MiSeq Illumina platform and annotated using an in-house pipeline. Amino acid sequences inferred from individual protein coding genes of the mt genomes were concatenated and then subjected to phylogenetic analysis using Bayesian inference. RESULTS: The mt genome of A. mackerrasae is 13,640 bp in size and contains 12 protein coding genes (cox1-3, nad1-6, nad4L, atp6 and cob), and two ribosomal RNA (rRNA) and 22 transfer RNA (tRNA) genes. CONCLUSIONS: The mt genome of A. mackerrasae has similar characteristics to those of other Angiostrongylus species. Sequence comparisons reveal that A. mackerrasae is closely related to A. cantonensis and the two sibling species may have recently diverged compared with all other species in the genus with a highly specific host selection. This mt genome will provide a source of genetic markers for explorations of the epidemiology, biology and population genetics of A. mackerrasae
1H-NMR-Based Metabolic Profiling of Maternal and Umbilical Cord Blood Indicates Altered Materno-Foetal Nutrient Exchange in Preterm Infants
Background: Adequate foetal growth is primarily determined by nutrient availability, which is dependent on placental nutrient transport and foetal metabolism. We have used 1H nuclear magnetic resonance (NMR) spectroscopy to probe the metabolic adaptations associated with premature birth. Methodology: The metabolic profile in 1H NMR spectra of plasma taken immediately after birth from umbilical vein, umbilical artery and maternal blood were recorded for mothers delivering very-low-birth-weight (VLBW) or normo-ponderal full-term (FT) neonates. Principal Findings: Clear distinctions between maternal and cord plasma of all samples were observed by principal component analysis (PCA). Levels of amino acids, glucose, and albumin-lysyl in cord plasma exceeded those in maternal plasma, whereas lipoproteins (notably low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) and lipid levels were lower in cord plasma from both VLBW and FT neonates. The metabolic signature of mothers delivering VLBW infants included decreased levels of acetate and increased levels of lipids, pyruvate, glutamine, valine and threonine. Decreased levels of lipoproteins glucose, pyruvate and albumin-lysyl and increased levels of glutamine were characteristic of cord blood (both arterial and venous) from VLBW infants, along with a decrease in levels of several amino acids in arterial cord blood. Conclusion: These results show that, because of its characteristics and simple non-invasive mode of collection, cord plasma is particularly suited for metabolomic analysis even in VLBW infants and provides new insights into the materno-foetal nutrient exchange in preterm infants
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
Principled Selection of Baseline Covariates to Account for Censoring in Randomized Trials with a Survival Endpoint
The analysis of randomized trials with time-to-event endpoints is nearly
always plagued by the problem of censoring. As the censoring mechanism is
usually unknown, analyses typically employ the assumption of non-informative
censoring. While this assumption usually becomes more plausible as more
baseline covariates are being adjusted for, such adjustment also raises
concerns. Pre-specification of which covariates will be adjusted for (and how)
is difficult, thus prompting the use of data-driven variable selection
procedures, which may impede valid inferences to be drawn. The adjustment for
covariates moreover adds concerns about model misspecification, and the fact
that each change in adjustment set, also changes the censoring assumption and
the treatment effect estimand. In this paper, we discuss these concerns and
propose a simple variable selection strategy that aims to produce a valid test
of the null in large samples. The proposal can be implemented using
off-the-shelf software for (penalized) Cox regression, and is empirically found
to work well in simulation studies and real data analyses
The spatial structure of lithic landscapes : the late holocene record of east-central Argentina as a case study
Fil: Barrientos, Gustavo. División Antropología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Catella, Luciana. División Arqueología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Oliva, Fernando. Centro Estudios Arqueológicos Regionales. Facultad de Humanidades y Artes. Universidad Nacional de Rosario; Argentin
A reduced order model for turbulent flows in the urban environment using machine learning
To help create a comfortable and healthy indoor and outdoor environment in which to live, there is a need to understand turbulent air flows within the urban environment. To this end, building on a previously reported method [1], we develop a fast-running Non-Intrusive Reduced Order Model (NIROM) for predicting the turbulent air flows found within an urban environment. To resolve larger scale turbulent fluctuations, we employ a Large Eddy Simulation (LES) model and solve the resulting computational model on unstructured meshes. The objective is to construct a rapid-running NIROM from these results that will have ‘similar’ dynamics to the original LES model. Based on Proper Orthogonal Decomposition (POD) and machine learning techniques, this Reduced Order Model (ROM) is six orders of magnitude faster than the high-fidelity LES model and we demonstrate how ‘similar’ it can be to the high-fidelity model by comparing statistical quantities such as the mean flows, Reynolds stresses and probability densities of the velocities. We also include validation of the high-fidelity model against data from wind tunnel experiments.This paper represents a key step towards the use of reduced order modelling for operational purposes with the tantalising possibility of it being used in place of Gaussian plume models, and the potential for greatly improved model fidelity and confidence
Assessing Deaf Cultural Competency of Physicians and Medical Students
The Medical Students, Cancer Control, and the Deaf Community Training program (DCT) intended to create physicians who were culturally competent to care for deaf patients were evaluated. DCT medical students (n = 22), UCSD medical faculty (n = 131), and non-DCT medical students (n = 211) were anonymously surveyed about their perceptions related to deaf patients, deaf cultural competency, and interpreter use. The faculty and non-DCT medical students displayed less knowledge than the DCT students. These findings suggest that training medical students in deaf cultural competency can significantly increase their capacity to care for community members and reduce the health disparities experienced by this community
- …
