13 research outputs found
Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment
<p>Abstract</p> <p>Background</p> <p>Tetrachloroethylene (PCE) is an important occupational chemical used in metal degreasing and drycleaning and a prevalent drinking water contaminant. Exposure often occurs with other chemicals but it occurred alone in a pattern that reduced the likelihood of confounding in a unique scenario on Cape Cod, Massachusetts. We previously found a small to moderate increased risk of breast cancer among women with the highest exposures using a simple exposure model. We have taken advantage of technical improvements in publically available software to incorporate a more sophisticated determination of water flow and direction to see if previous results were robust to more accurate exposure assessment.</p> <p>Methods</p> <p>The current analysis used PCE exposure estimates generated with the addition of water distribution modeling software (EPANET 2.0) to test model assumptions, compare exposure distributions to prior methods, and re-examine the risk of breast cancer. In addition, we applied data smoothing to examine nonlinear relationships between breast cancer and exposure. We also compared a set of measured PCE concentrations in water samples collected in 1980 to modeled estimates.</p> <p>Results</p> <p>Thirty-nine percent of individuals considered unexposed in prior epidemiological analyses were considered exposed using the current method, but mostly at low exposure levels. As a result, the exposure distribution was shifted downward resulting in a lower value for the 90th percentile, the definition of "high exposure" in prior analyses. The current analyses confirmed a modest increase in the risk of breast cancer for women with high PCE exposure levels defined by either the 90th percentile (adjusted ORs 1.0-1.5 for 0-19 year latency assumptions) or smoothing analysis cut point (adjusted ORs 1.3-2.0 for 0-15 year latency assumptions). Current exposure estimates had a higher correlation with PCE concentrations in water samples (Spearman correlation coefficient = 0.65, p < 0.0001) than estimates generated using the prior method (0.54, p < 0.0001).</p> <p>Conclusions</p> <p>The incorporation of sophisticated flow estimates in the exposure assessment method shifted the PCE exposure distribution downward, but did not meaningfully affect the exposure ranking of subjects or the strength of the association with the risk of breast cancer found in earlier analyses. Thus, the current analyses show a slightly elevated breast cancer risk for highly exposed women, with strengthened exposure assessment and minimization of misclassification by using the latest technology.</p
Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study
Scale dependency of dynamic relative permeability–satuartion curves in relation with fluid viscosity and dynamic capillary pressure effect
Modeling of Organic Liquid Entrapment and Surfactant Enhanced Recovery in Heterogeneous Media
Tunable two-dimensional interfacial coupling in molecular heterostructures
© 2017 The Author(s). Two-dimensional van der Waals heterostructures are of considerable interest for the next generation nanoelectronics because of their unique interlayer coupling and optoelectronic properties. Here, we report a modified Langmuir-Blodgett method to organize two-dimensional molecular charge transfer crystals into arbitrarily and vertically stacked heterostructures, consisting of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF)/C60 and poly(3-dodecylthiophene-2,5-diyl) (P3DDT)/C60 nanosheets. A strong and anisotropic interfacial coupling between the charge transfer pairs is demonstrated. The van der Waals heterostructures exhibit pressure dependent sensitivity with a high piezoresistance coefficient of -4.4 × 10-6 Pa-1, and conductance and capacitance tunable by external stimuli (ferroelectric field and magnetic field). Density functional theory calculations confirm charge transfer between the n-orbitals of the S atoms in BEDT-TTF of the BEDT-TTF/C60 layer and the πorbitals of C atoms in C60 of the P3DDT/C60 layer contribute to the inter-complex CT. The two-dimensional molecular van der Waals heterostructures with tunable optical-electronic-magnetic coupling properties are promising for flexible electronic applications
