63 research outputs found
Carbon Monoxide Promotes Respiratory Hemoproteins Iron Reduction Using Peroxides as Electron Donors
The physiological role of the respiratory hemoproteins (RH), hemoglobin and myoglobin, is to deliver O2 via its binding to their ferrous (FeII) heme-iron. Under variety of pathological conditions RH proteins leak to blood plasma and oxidized to ferric (FeIII, met) forms becoming the source of oxidative vascular damage. However, recent studies have indicated that both metRH and peroxides induce Heme Oxygenase (HO) enzyme producing carbon monoxide (CO). The gas has an extremely high affinity for the ferrous heme-iron and is known to reduce ferric hemoproteins in the presence of suitable electron donors. We hypothesized that under in vivo plasma conditions, peroxides at low concentration can assist the reduction of metRH in presence of CO. The effect of CO on interaction of metRH with hydrophilic or hydrophobic peroxides was analyzed by following Soret and visible light absorption changes in reaction mixtures. It was found that under anaerobic conditions and low concentrations of RH and peroxides mimicking plasma conditions, peroxides served as electron donors and RH were reduced to their ferrous carboxy forms. The reaction rates were dependent on CO as well as peroxide concentrations. These results demonstrate that oxidative activity of acellular ferric RH and peroxides may be amended by CO turning on the reducing potential of peroxides and facilitating the formation of redox-inactive carboxyRH. Our data suggest the possible role of HO/CO in protection of vascular system from oxidative damage
Immunological properties of Oxygen-Transport Proteins: Hemoglobin, Hemocyanin and Hemerythrin
Effect of N-acetylcysteine on vasospasm in subarachnoid hemorrhage
Vasospasm remains an extremely serious complication that affects patients presenting with subarachnoid hemorrhage (SAH) due to ruptured intracranial aneurysms. The current therapeutic armamentarium is still insufficient in many cases, and the search for new therapies is necessary. In this study, we evaluated the effect of N-acetylcysteine (NAC) on cerebral arterial vasospasm using an experimental model. Twenty-four wistar rats were divided into 4 groups: [1] Control, [2] SAH, [3] SAH+NAC and [4] SAH+Placebo. The experimental model employed double subarachnoid injections of autologous blood. The proposed dose of NAC was 250 mg/kg intraperitoneally per day. We analyzed the inner area of the basilar artery to assess the action of NAC. The experimental model proved to be very adequate, with a mortality rate of 4%. The inner area of the basilar artery in the SAH group showed significant difference to the control group (p=0.009). The use of NAC significantly reduced vasospasm as compared to the untreated group (p=0.048) and established no significant difference to the control group (p=0.098). There was no significant improvement with the administration of placebo (p=0.97). The model of the dual hemorrhage proved to be very useful for vasospasm simulation, with overall low mortality. The administration of NAC significantly reduced vasospasm resulting from SAH, and may represent a new therapeutic alternative
A Comparative Study of Zinc and Copper Values in Serum, Erythrocytes and Urine in Sickle Cell Homozygotes and Heterozygotes
Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity
Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin
Haptoglobin Preferentially Binds β but Not α Subunits Cross-Linked Hemoglobin Tetramers with Minimal Effects on Ligand and Redox Reactions
- …
