201 research outputs found

    Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures

    Get PDF
    The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    A cross-sectional study of the relation between symptoms and physical findings in computer operators

    Get PDF
    BACKGROUND: The character of upper limb disorder in computer operators is subject to debate. A peripheral nerve-involvement is suggested from the common presence of a triad of symptoms consisting of pain, paraestesiae and subjective weakness, and from physical findings suggesting neuropathy. This study aimed to examine the outcome of a detailed neurological examination in computer operators and to compare findings with the presence of symptoms. METHODS: 96 graphical computer operators answered a modified Nordic Questionnaire including information on perceived pain in the shoulder, elbow, and wrist/hand scored for each region on a VAS-scale 0 – 9. In addition, they underwent a physical examination including the subjective assessment of the individual function of 11 upper limb muscles, of algesia in five and vibratory threshold in three territories, respectively, and of mechanosensitivity of nerves at seven locations. In order to reflect an involvement of the brachial plexus (chord level), the posterior interosseous nerve and the median nerve at elbow level we defined three patterns of neurological findings illustrating the course of nerves and their innervation. The pain scores summarized for the three upper limb regions (min. = 0, max = 27) in the mouse-operating and contralateral limbs were compared by a Wilcoxon test and the relation to each physical item analyzed by Kendall's rank correlation. The relation of summarized pain to each pattern was studied by application of a test of the trend across ordered groups (patterns). RESULTS: Pain, paraestesiae and subjective weakness was reported for 67, 23, and 7 mouse-operating limbs, respectively, with the summarized pain scores exceeding 4 in 33 limbs. Abnormal physical findings were prevalent. The summarized pain was significantly related to a reduced function in five muscles, to mechanical allodynia at one location and to elevated threshold to vibration in two territories. Brachial plexopathy was diagnosed in 9/2, median neuropathy in 13/5 and posterior interosseous neuropathy in 13/8 mouse operating/contralateral limbs, respectively. The summarized pain was significantly higher in the mouse-operating limbs and in limbs with any of the defined patterns. There was a significant trend between the summarized pain and the summarized scores for the items contained in each pattern. CONCLUSION: This small-scale study of a group of computer-operators currently in work and with no or minor upper limb symptoms has indicated in symptomatic subjects the presence of peripheral nerve-afflictions with specific locations

    The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Get PDF
    Background: Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors (FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM) generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.The authors are grateful for the constant support provided by the Hospital Universitari de Sant Joan and the Universitat Rovira i Virgili. Salvador Fernández-Arroyo is the recipient of a Sara Borrell grant (CD12/00672) from the Instituto de Salud Carlos III, Madrid, Spain. The authors also thank the Andalusian Regional Government Council of Innovation and Science for the Excellence Project P11-CTS-7625 and Generalitat Valenciana for the project PROMETEO/2012/007. This work was also supported by projects of the Fundación Areces and the Fundación MAGAR

    Haemolysis during Sample Preparation Alters microRNA Content of Plasma

    Get PDF
    The presence of cell-free microRNAs (miRNAs) has been detected in a range of body fluids. The miRNA content of plasma/serum in particular has been proposed as a potential source of novel biomarkers for a number of diseases. Nevertheless, the quantification of miRNAs from plasma or serum is made difficult due to inefficient isolation and lack of consensus regarding the optimal reference miRNA. The effect of haemolysis on the quantification and normalisation of miRNAs in plasma has not been investigated in great detail. We found that levels of miR-16, a commonly used reference gene, showed little variation when measured in plasma samples from healthy volunteers or patients with malignant mesothelioma or coronary artery disease. Including samples with evidence of haemolysis led to variation in miR-16 levels and consequently decreased its ability to serve as a reference. The levels of miR-16 and miR-451, both present in significant levels in red blood cells, were proportional to the degree of haemolysis. Measurements of the level of these miRNAs in whole blood, plasma, red blood cells and peripheral blood mononuclear cells revealed that the miRNA content of red blood cells represents the major source of variation in miR-16 and miR-451 levels measured in plasma. Adding lysed red blood cells to non-haemolysed plasma allowed a cut-off level of free haemoglobin to be determined, below which miR-16 and miR-451 levels displayed little variation between individuals. In conclusion, increases in plasma miR-16 and miR-451 are caused by haemolysis. In the absence of haemolysis the levels of both miR-16 and miR-451 are sufficiently constant to serve as normalisers

    The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of <it>CCW12 </it>results in severe cell wall damage and reduced mating efficiency.</p> <p>Results</p> <p>In order to explore the function of <it>CCW12</it>, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of <it>CCW12</it>. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are <it>PFD1</it>, <it>WHI3</it>, <it>SRN2</it>, <it>PAC10</it>, <it>FEN1 </it>and <it>YDR417C</it>, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant <it>ccw12</it>Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are <it>BCK1</it>, <it>CHS3</it>, <it>EDE1</it>, <it>PFD1</it>, <it>SLT2 </it>and <it>SLA1 </it>that were also identified in the SGA. In contrast, a specific feature of mutant <it>ccw12</it>Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection.</p> <p>Conclusions</p> <p>The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw12p. A compensatory response, culminating in cell wall remodelling and transport/recycling pathways is required to buffer the loss of <it>CCW12</it>. Moreover, the enrichment of Ccw12p in bud, septum and mating projection is consistent with a role of Ccw12p in preserving cell wall integrity at sites of active growth.</p> <p>The microarray data produced in this analysis have been submitted to NCBI GEO database and GSE22649 record was assigned.</p

    The type 2C phosphatase Wip1: An oncogenic regulator of tumor suppressor and DNA damage response pathways

    Get PDF
    The Wild-type p53-induced phosphatase 1, Wip1 (or PPM1D), is unusual in that it is a serine/threonine phosphatase with oncogenic activity. A member of the type 2C phosphatases (PP2Cδ), Wip1 has been shown to be amplified and overexpressed in multiple human cancer types, including breast and ovarian carcinomas. In rodent primary fibroblast transformation assays, Wip1 cooperates with known oncogenes to induce transformed foci. The recent identification of target proteins that are dephosphorylated by Wip1 has provided mechanistic insights into its oncogenic functions. Wip1 acts as a homeostatic regulator of the DNA damage response by dephosphorylating proteins that are substrates of both ATM and ATR, important DNA damage sensor kinases. Wip1 also suppresses the activity of multiple tumor suppressors, including p53, ATM, p16INK4a and ARF. We present evidence that the suppression of p53, p38 MAP kinase, and ATM/ATR signaling pathways by Wip1 are important components of its oncogenicity when it is amplified and overexpressed in human cancers

    High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response

    Get PDF
    Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography–mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis
    corecore