3,988 research outputs found
Atrial fibrillation and electrophysiology in transgenic mice with cardiac-restricted overexpression of FKBP12
Cardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation
Progenetix: 12 years of oncogenomic data curation
DNA copy number aberrations (CNAs) can be found in the majority of cancer genomes and are crucial for understanding the potential mechanisms underlying tumor initiation and progression. Since the first release in 2001, the Progenetix project (http://www.progenetix.org) has provided a reference resource dedicated to provide the most comprehensive collection of genome-wide CNA profiles. Reflecting the application of comparative genomic hybridization techniques to tens of thousands of cancer genomes, over the past 12 years our data curation efforts have resulted in a more than 60-fold increase in the number of cancer samples presented through Progenetix. In addition, new data exploration tools and visualization options have been added. In particular, the gene-specific CNA frequency analysis should facilitate the assignment of cancer genes to related cancer types. In addition, the new user file processing interface allows users to take advantage of the online tools, including various data representation options for proprietary data pre-publication. In this update article, we report recent improvements of the database in terms of content, user interface and online tool
Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey
Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are
shaped by the distribution of gas in the host galaxy and by the geometry of the
circumnuclear obscuration, and thus they can be used to test the AGN
unification model. In this work, we quantify the morphologies of the
narrow-line regions in 308 nearby AGNs (, \lbol
\erg{}) from the MaNGA survey. Based on the narrow-line region maps, we find
that a large fraction (81\%) of these AGN have bi-conical NLR morphology. The
distribution of their measured opening angles suggests that the intrinsic
opening angles of the ionization cones has a mean value of 85--98 with
a finite spread of 39-44 (1-). Our inferred opening angle
distribution implies a number ratio of type I to type II AGN of 1:1.6--2.3,
consistent with other measurements of the type I / type II ratio at low AGN
luminosities. Combining these measurements with the WISE photometry data, we
find that redder mid-IR color (lower effective temperature of dust) corresponds
to stronger and narrower photo-ionized bicones. This relation is in agreement
with the unification model that suggests that the bi-conical narrow-line
regions are shaped by a toroidal dusty structure within a few pc from the AGN.
Furthermore, we find a significant alignment between the minor axis of host
galaxy disks and AGN ionization cones. Together, these findings suggest that
obscuration on both circumnuclear (pc) and galactic ( kpc) scales
are important in shaping and orienting the AGN narrow-line regions.Comment: 14 pages, 7 figures, and 1 table, accepted for publication in MNRA
arrayMap 2014: an updated cancer genome resource
Somatic copy number aberrations (CNA) represent a mutation type encountered in the majority of cancer genomes. Here, we present the 2014 edition of arrayMap (http://www.arraymap.org), a publicly accessible collection of pre-processed oncogenomic array data sets and CNA profiles, representing a vast range of human malignancies. Since the initial release, we have enhanced this resource both in content and especially with regard to data mining support. The 2014 release of arrayMap contains more than 64 000 genomic array data sets, representing about 250 tumor diagnoses. Data sets included in arrayMap have been assembled from public repositories as well as additional resources, and integrated by applying custom processing pipelines. Online tools have been upgraded for a more flexible array data visualization, including options for processing user provided, non-public data sets. Data integration has been improved by mapping to multiple editions of the human reference genome, with the majority of the data now being available for the UCSC hg18 as well as GRCh37 versions. The large amount of tumor CNA data in arrayMap can be freely downloaded by users to promote data mining projects, and to explore special events such as chromothripsis-like genome pattern
Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes.
Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases
Imaging Extended Emission-Line Regions of Obscured AGN with the Subaru Hyper Suprime-Cam Survey
Narrow-line regions excited by active galactic nuclei (AGN) are important for
studying AGN photoionization and feedback. Their strong [O III] lines can be
detected with broadband images, allowing morphological studies of these systems
with large-area imaging surveys. We develop a new technique to reconstruct the
[O III] images using the Subaru Hyper Suprime-Cam (HSC) Survey aided with
spectra from the Sloan Digital Sky Survey (SDSS). The technique involves a
careful subtraction of the galactic continuum to isolate emission from the [O
III]5007 and [O III]4959 lines. Compared to traditional
targeted observations, this technique is more efficient at covering larger
samples with less dedicated observational resources. We apply this technique to
an SDSS spectroscopically selected sample of 300 obscured AGN at redshifts 0.1
- 0.7, uncovering extended emission-line region candidates with sizes up to
tens of kpc. With the largest sample of uniformly derived narrow-line region
sizes, we revisit the narrow-line region size-luminosity relation. The area and
radii of the [O III] emission-line regions are strongly correlated with the AGN
luminosity inferred from the mid-infrared (15 m rest-frame) with a
power-law slope of (statistical and systemic
errors), consistent with previous spectroscopic findings. We discuss the
implications for the physics of AGN emission-line region and future
applications of this technique, which should be useful for current and
next-generation imaging surveys to study AGN photoionization and feedback with
large statistical samples.Comment: 20 pages, 13 figures, MNRAS submitte
Vaccination against Foot-and-mouth disease : do initial conditions affect its benefit?
When facing incursion of a major livestock infectious disease, the decision to implement a vaccination programme is made at the national level. To make this decision, governments must consider whether the benefits of vaccination are sufficient to outweigh potential additional costs, including further trade restrictions that may be imposed due to the implementation of vaccination. However, little consensus exists on the factors triggering its implementation on the field. This work explores the effect of several triggers in the implementation of a reactive vaccination-to-live policy when facing epidemics of foot-and-mouth disease. In particular, we tested whether changes in the location of the incursion and the delay of implementation would affect the epidemiological benefit of such a policy in the context of Scotland. To reach this goal, we used a spatial, premises-based model that has been extensively used to investigate the effectiveness of mitigation procedures in Great Britain. The results show that the decision to vaccinate, or not, is not straightforward and strongly depends on the underlying local structure of the population-at-risk. With regards to disease incursion preparedness, simply identifying areas of highest population density may not capture all complexities that may influence the spread of disease as well as the benefit of implementing vaccination. However, if a decision to vaccinate is made, we show that delaying its implementation in the field may markedly reduce its benefit. This work provides guidelines to support policy makers in their decision to implement, or not, a vaccination-to-live policy when facing epidemics of infectious livestock disease
Single vortex-antivortex pair in an exciton polariton condensate
In a homogeneous two-dimensional system at non-zero temperature, although
there can be no ordering of infinite range, a superfluid phase is predicted for
a Bose liquid. The stabilization of phase in this superfluid regime is achieved
by the formation of bound vortex-antivortex pairs. It is believed that several
different systems share this common behaviour, when the parameter describing
their ordered state has two degrees of freedom, and the theory has been tested
for some of them. However, there has been no direct experimental observation of
the phase stabilization mechanism by a bound pair. Here we present an
experimental technique that can identify a single vortex-antivortex pair in a
two-dimensional exciton polariton condensate. The pair is generated by the
inhomogeneous pumping spot profile, and is revealed in the time-integrated
phase maps acquired using Michelson interferometry, which show that the
condensate phase is only locally disturbed. Numerical modelling based on open
dissipative Gross-Pitaevskii equation suggests that the pair evolution is quite
different in this non-equilibrium system compared to atomic condensates. Our
results demonstrate that the exciton polariton condensate is a unique system
for studying two-dimensional superfluidity in a previously inaccessible regime
Supersymmetric QCD: Exact Results and Strong Coupling
We revisit two longstanding puzzles in supersymmetric gauge theories. The
first concerns the question of the holomorphy of the coupling, and related to
this the possible definition of an exact (NSVZ) beta function. The second
concerns instantons in pure gluodynamics, which appear to give sensible, exact
results for certain correlation functions, which nonetheless differ from those
obtained using systematic weak coupling expansions. For the first question, we
extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their
regulated action is written suitably, the holomorphy of the couplings is
manifest, and it is easy to determine the renormalization scheme for which the
NSVZ formula holds. This scheme, however, is seen to be one of an infinite
class of schemes, each leading to an exact beta function; the NSVZ scheme,
while simple, is not selected by any compelling physical consideration. For the
second question, we explain why the instanton computation in the pure
supersymmetric gauge theory is not reliable, even at short distances. The
semiclassical expansion about the instanton is purely formal; if infrared
divergences appear, they spoil arguments based on holomorphy. We demonstrate
that infrared divergences do not occur in the perturbation expansion about the
instanton, but explain that there is no reason to think this captures all
contributions from the sector with unit topological charge. That one expects
additional contributions is illustrated by dilute gas corrections. These are
infrared divergent, and so difficult to define, but if non-zero give order one,
holomorphic, corrections to the leading result. Exploiting an earlier analysis
of Davies et al, we demonstrate that in the theory compactified on a circle of
radius beta, due to infrared effects, finite contributions indeed arise which
are not visible in the formal limit that beta goes to infinity.Comment: 28 pages, two references added, one typo correcte
- …
