75 research outputs found
Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications
Antinociceptive and anti-inflammatory effects of a Geissospermum vellosii stem bark fraction
Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis
Research on vector-associated microbiomes has been expanding due to increasing emergence of vector borne pathogens and awareness of the importance of symbionts in the vector physiology. However, little is known about microbiomes of argasid (or soft-bodied) ticks due to limited access to specimens. We collected four argasid species (Argas japonicus, Carios vespertilionis, Ornithodoros capensis, and Ornithodoros sawaii) from the nests or burrows of their vertebrate hosts. One laboratory-reared argasid species (Ornithodoros moubata) was also included. Attempts were then made to isolate and characterize potential symbionts/pathogens using arthropod cell lines. Microbial community structure was distinct for each tick species. Coxiella was detected as the predominant symbiont in four tick species where dual symbiosis between Coxiella and Rickettsia or Coxiella and Francisella was observed in C. vespertilionis and O. moubata, respectively. Of note, A. japonicus lacked Coxiella and instead had Occidentia massiliensis and Thiotrichales as alternative symbionts. Our study found strong correlation between tick species and life stage. We successfully isolated Oc. massiliensis and characterized potential pathogens of genera Ehrlichia and Borrelia. The results suggest that there is no consistent trend of microbiomes in relation to tick life stage that fit all tick species and that the final interpretation should be related to the balance between environmental bacterial exposure and endosymbiont ecology. Nevertheless, our findings provide insights on the ecology of tick microbiomes and basis for future investigations on the capacity of argasid ticks to carry novel pathogens with public health importance. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/)
Enhanced visible-light photocatalytic degradation activity of Ti3C2/PDIsm via π–π interaction and interfacial charge separation: Experimental and theoretical investigations
Two-dimensional SiS as a potential anode material for lithium-based batteries: A first-principles study
In this work, we perform first-principles study to investigate the potential of two-dimensional (2D) SiS as an anode material for lithium-based batteries. Four predicted structures of 2D SiS are considered, including α-SiS, β-SiS, Pma2-SiS and silicene sulfide. Results show that among the samples studied, α-SiS exhibits: i) a negative adsorption energy to lithium of −0.44 eV; ii) the highest theoretical specific capacity of 446 mAh g−1, which is even higher than that of phosphorene (433 mAh g−1) and Ti3C2 (320 mAh g−1); iii) a low average open-circuit-voltage (OCV) of 0.20 V; iv) a fast lithium diffusivity with an energy barrier of only 0.17 eV, lower than that on MoS2 (0.25 eV), VS2 (0.22 eV) and silicene (0.23 eV); and v) a change from semiconducting to metallic state after lithiation. These advantages demonstrate that α-SiS is a promising anode material for lithium-ion batteries, and gives a choice for other lithium-based batteries such as lithium-oxygen and lithium-sulfur batteries as well. © 2016 Elsevier B.V
Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis
A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning
Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS 2
- …
