18 research outputs found

    Obesity and diabetes genes are associated with being born small for gestational age: Results from the Auckland Birthweight Collaborative study

    Get PDF
    Background: Individuals born small for gestational age (SGA) are at increased risk of rapid postnatal weight gain, later obesity and diseases in adulthood such as type 2 diabetes, hypertension and cardiovascular diseases. Environmental risk factors for SGA are well established and include smoking, low pregnancy weight, maternal short stature, maternal diet, ethnic origin of mother and hypertension. However, in a large proportion of SGA, no underlying cause is evident, and these individuals may have a larger genetic contribution. Methods: In this study we tested the association between SGA and polymorphisms in genes that have previously been associated with obesity and/or diabetes. We undertook analysis of 54 single nucleotide polymorphisms (SNPs) in 546 samples from the Auckland Birthweight Collaborative (ABC) study. 227 children were born small for gestational age (SGA) and 319 were appropriate for gestational age (AGA). Results and Conclusion: The results demonstrated that genetic variation in KCNJ11, BDNF, PFKP, PTER and SEC16B were associated with SGA and support the concept that genetic factors associated with obesity and/or type 2 diabetes are more prevalent in those born SGA compared to those born AGA. We have previously determined that environmental factors are associated with differences in birthweight in the ABC study and now we have demonstrated a significant genetic contribution, suggesting that the interaction between genetics and the environment are important

    A Genome-Wide Association Scan on the Levels of Markers of Inflammation in Sardinians Reveals Associations That Underpin Its Complex Regulation

    Get PDF
    Identifying the genes that influence levels of pro-inflammatory molecules can help to elucidate the mechanisms underlying this process. We first conducted a two-stage genome-wide association scan (GWAS) for the key inflammatory biomarkers Interleukin-6 (IL-6), the general measure of inflammation erythrocyte sedimentation rate (ESR), monocyte chemotactic protein-1 (MCP-1), and high-sensitivity C-reactive protein (hsCRP) in a large cohort of individuals from the founder population of Sardinia. By analysing 731,213 autosomal or X chromosome SNPs and an additional ∼1.9 million imputed variants in 4,694 individuals, we identified several SNPs associated with the selected quantitative trait loci (QTLs) and replicated all the top signals in an independent sample of 1,392 individuals from the same population. Next, to increase power to detect and resolve associations, we further genotyped the whole cohort (6,145 individuals) for 293,875 variants included on the ImmunoChip and MetaboChip custom arrays. Overall, our combined approach led to the identification of 9 genome-wide significant novel independent signals—5 of which were identified only with the custom arrays—and provided confirmatory evidence for an additional 7. Novel signals include: for IL-6, in the ABO gene (rs657152, p = 2.13×10−29); for ESR, at the HBB (rs4910472, p = 2.31×10−11) and UCN119B/SPPL3 (rs11829037, p = 8.91×10−10) loci; for MCP-1, near its receptor CCR2 (rs17141006, p = 7.53×10−13) and in CADM3 (rs3026968, p = 7.63×10−13); for hsCRP, within the CRP gene (rs3093077, p = 5.73×10−21), near DARC (rs3845624, p = 1.43×10−10), UNC119B/SPPL3 (rs11829037, p = 1.50×10−14), and ICOSLG/AIRE (rs113459440, p = 1.54×10−08) loci. Confirmatory evidence was found for IL-6 in the IL-6R gene (rs4129267); for ESR at CR1 (rs12567990) and TMEM57 (rs10903129); for MCP-1 at DARC (rs12075); and for hsCRP at CRP (rs1205), HNF1A (rs225918), and APOC-I (rs4420638). Our results improve the current knowledge of genetic variants underlying inflammation and provide novel clues for the understanding of the molecular mechanisms regulating this complex process

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity

    CNV Analysis Associates AKNAD1 with Type-2 Diabetes in Jordan Subpopulations

    No full text
    Previous studies have identified a number of single nucleotide polymorphisms (SNPs) associated with type-2 diabetes (T2D), but copy number variation (CNV) association has rarely been addressed, especially in populations from Jordan. To investigate CNV associations for T2D in populations in Jordan, we conducted a CNV analysis based on intensity data from genome-wide SNP array, including 34 T2D cases and 110 healthy controls of Chechen ethnicity, as well as 34 T2D cases and 106 healthy controls of Circassian ethnicity. We found a CNV region in protein tyrosine phosphatase receptor type D (PTPRD) with significant association with T2D. PTPRD has been reported to be associated with T2D in genome-wide association studies (GWAS). We additionally identified 16 CNV regions associated with T2D which overlapped with gene exons. Of particular interest, a CNV region in the gene AKNA Domain Containing 1 (AKNAD1) surpassed the experiment-wide significance threshold. Endoplasmic reticulum (ER)-related pathways were significantly enriched among genes which are predicted to be functionally associated with human or mouse homologues of AKNAD1. This is the first CNV analysis of a complex disease in populations of Jordan. We identified and experimentally validated a significant CNVR in gene AKNAD1 associated with T2D

    A map of open chromatin in human pancreatic islets

    Get PDF
    Tissue-specific transcriptional regulation is central to human disease. To identify regulatory DNA active in human pancreatic islets, we profiled chromatin by formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). We identified approximately 80,000 open chromatin sites. Comparison of FAIRE-seq data from islets to that from five non-islet cell lines revealed approximately 3,300 physically linked clusters of islet-selective open chromatin sites, which typically encompassed single genes that have islet-specific expression. We mapped sequence variants to open chromatin sites and found that rs7903146, a TCF7L2 intronic variant strongly associated with type 2 diabetes, is located in islet-selective open chromatin. We found that human islet samples heterozygous for rs7903146 showed allelic imbalance in islet FAIRE signals and that the variant alters enhancer activity, indicating that genetic variation at this locus acts in cis with local chromatin and regulatory changes. These findings illuminate the tissue-specific organization of cis-regulatory elements and show that FAIRE-seq can guide the identification of regulatory variants underlying disease susceptibility
    corecore